Задачи систем массового обслуживания (СМО). Простейшие системы массового обслуживания, примеры использования при решении экономических задач

Математический (абстрактный) объект, элементами которого являются (рис. 2.1):

  • входной (входящий) поток заявок (требований) на обслуживание;
  • приборы (каналы) обслуживания;
  • очередь заявок, ожидающих обслуживания;
  • выходной (выходящий) поток обслуженных заявок;
  • поток заявок на дообслуживание после прерывания обслуживания;
  • поток необслуженных заявок.

Заявка (запрос, требование, вызов, клиент, сообщение, пакет) - объект, поступающий в СМО и требующий обслуживания в приборе. Совокупность последовательных заявок, распределенных во времени, образуют входной поток заявок.

Рис. 2.1.

Обслуживающий прибор (прибор, устройство, канал, линия, орудие, автомобиль, маршрутизатор и т.п.) - элемент СМО, назначением которого является обслуживание заявок.

Обслуживание - задержка заявки в обслуживающем приборе на некоторое время.

Длительность обслуживания - время задержки (обслуживания) заявки в приборе.

Накопитель (буфер, входной буфер, выходной буфер) - совокупность мест для ожидания заявок перед обслуживающим прибором. Количество мест для ожидания - емкость накопителя.

Заявка, поступившая в СМО, может находиться в двух состояниях:

  • 1) обслуживания (в приборе);
  • 2) ожидания (в накопителе), если все приборы заняты обслуживанием других заявок.

Заявки, находящиеся в накопителе и ожидающие обслуживания, образуют очередь заявок. Количество заявок в накопителе, ожидающих обслуживания, - длина очереди.

Дисциплина буферизации (дисциплина постановки в очередь) - правило занесения поступающих заявок в накопитель (буфер).

Дисциплина обслуживания - правило выбора заявок из очереди для обслуживания в приборе.

Приоритет - преимущественное право (на захват ресурсов) на занесение в накопитель или выбор из очереди для обслуживания в приборе заявок одного класса по отношению к заявкам других классов.

Существует множество систем массового обслуживания, отличающихся структурной и функциональной организацией. В то же время разработка аналитических методов расчета показателей функционирования СМО во многих случаях предполагает наличие ряда ограничений и допущений, сужающих множество исследуемых СМО. Поэтому всеобщей аналитической модели для произвольной СМО сложной структуры не существует.

Аналитической моделью СМО является совокупность уравнений или формул, позволяющих определять вероятности состояний системы в процессе ее функционирования и показатели эффективности по известным параметрам входящего потока и каналов обслуживания, дисциплинам буферизации и обслуживания.

Аналитическое моделирование СМО существенно облегчается, если процессы, протекающие в СМО, - марковские (потоки заявок простейшие, времена обслуживания распределены экспоненциально). В этом случае все процессы в СМО можно описать обыкновенными дифференциальными уравнениями, а в предельном случае - для стационарных состояний - линейными алгебраическими уравнениями и, решив их любыми методами, имеющимися в математических программных пакетах, определить выбранные показатели эффективности.

В системах ИМ при реализации СМО принимаются следующие ограничения и допущения:

  • поступившая в систему заявка мгновенно попадает на обслуживание, если в очереди нет заявок и прибор свободен;
  • в приборе на обслуживании в каждый момент времени может находиться только одна заявка;
  • после окончания обслуживания какой-либо заявки в приборе очередная заявка выбирается из очереди на обслуживание мгновенно, т.е., прибор не простаивает, если в очереди есть хотя бы одна заявка;
  • поступление заявок в СМО и длительности их обслуживания не зависят от числа заявок, уже находящихся в системе, или от каких- либо других факторов;
  • длительность обслуживания заявок не зависит от интенсивности поступления заявок в систему.

Остановимся на некоторых элементах СМО более подробно.

Входной (входящий) поток заявок. Потоком событий называется последовательность однородных событий, следующих одно за другим и происходящих в какие-то, вообще говоря, случайные моменты времени. Если событие заключается в появлении заявок, имеем поток заявок. Для описания потока заявок в общем случае необходимо задать интервалы времени т = t k - t k-1 между соседними моментами t k _ k и t k поступления заявок с порядковыми номерами к - 1 и к соответственно (к - 1, 2, ...; t 0 - 0 - начальный момент времени).

Основной характеристикой потока заявок является его интенсивность X - среднее число заявок, поступающих на вход СМО за единицу времени. Величина т = 1/Х определяет средний интервал времени между двумя последовательными заявками.

Поток называется детерминированным, если интервалы времени т к между соседними заявками принимают определенные заранее известные значения. Если при этом интервалы одинаковы (х к = т для всех к = 1, 2, ...), то поток называется регулярным. Для полного описания регулярного потока заявок достаточно задать интенсивность потока X или значение интервала т = 1/Х.

Поток, в котором интервалы времени х к между соседними заявками представляют собой случайные величины, называется случайным. Для полного описания случайного потока заявок в общем случае необходимо задать законы распределений F fc (x fc) каждого из интервалов времени х к, к = 1,2,....

Случайный поток, в котором все интервалы времени х ь х 2 , ... между соседними последовательными заявками представляют собой независимые случайные величины, описываемые функциями распределений FjCij), F 2 (x 2), ... соответственно, называется потоком с ограниченным последействием.

Случайный поток называется рекуррентным, если все интервалы времени х ь т 2 , ... между заявками распределены по одному и тому же закону F(t). Рекуррентных потоков много. Каждый закон распределения порождает свой рекуррентный поток. Рекуррентные потоки иначе называют потоками Пальма.

Если интенсивность X и закон распределения F(t) интервалов между последовательными заявками не меняются со временем, то поток заявок называется стационарнъш. В противном случае поток заявок является нестационарным.

Если в каждый момент времени t k на входе СМО может появиться только одна заявка, то поток заявок называется ординарным. Если в какой-либо момент времени может появиться более одной заявки, то поток заявок - неординарный, или групповой.

Поток заявок называется потоком без последействия, если заявки поступают независимо друг от друга, т.е. момент поступления очередной заявки не зависит от того, когда и сколько заявок поступило до этого момента.

Стационарный ординарный поток без последействия называется простейшим.

Интервалы времени т между заявками в простейшем потоке распределены по экспоненциальному (показательному ) закону: с функцией распределения F(t) = 1 - е~ м; плотностью распределения/(f) = Хе~" л, где X > 0 - параметр распределения - интенсивность потока заявок.

Простейший поток часто называют пуассоновским. Название происходит от того, что для этого потока вероятность P fc (At) появления ровно к заявок за некоторый интервал времени At определяется законом Пуассона:

Следует заметить, что пуассоновский поток, в отличие от простейшего, может быть:

  • стационарным, если интенсивность X не меняется со временем;
  • нестационарным, если интенсивность потока зависит от времени: X = >.(t).

В то же время простейший поток, по определению, всегда является стационарным.

Аналитические исследования моделей массового обслуживания часто проводятся в предположении о простейшем потоке заявок, что обусловлено рядом присущих ему замечательных особенностей.

1. Суммирование (объединение) потоков. Простейший поток в теории СМО аналогичен нормальному закону распределения в теории вероятностей: к простейшему потоку приводит предельный переход для потока, являющегося суммой потоков с произвольными характеристиками при бесконечном увеличении числа слагаемых и уменьшении их интенсивности.

Сумма N независимых стационарных ординарных потоков с интенсивностями Х ь Х 2 ,..., X N образует простейший поток с интенсивностью

X=Y,^i при условии, что складываемые потоки оказывают более или

менее одинаково малое влияние на суммарный поток. На практике суммарный поток близок к простейшему при N > 5. Значит, при суммировании независимых простейших потоков суммарный поток будет простейшим при любом значении N.

  • 2. Вероятностное разрежение потока. Вероятностное (но не детерминированное ) разрежение простейшего потока заявок, при котором любая заявка случайным образом с некоторой вероятностью р исключается из потока независимо от того, исключены другие заявки или нет, приводит к образованию простейшего потока с интенсивностью X* = рХ, где X - интенсивность исходного потока. Поток исключенных заявок с интенсивностью X** = (1 - р)Х - тоже простейший поток.
  • 3. Эффективность. Если обслуживающие каналы (приборы) рассчитаны на простейший поток заявок с интенсивностью X, то обслуживание других типов потоков (с той же интенсивностью) будет обеспечено с не меньшей эффективностью.
  • 4. Простота. Предположение о простейшем потоке заявок позволяет для многих математических моделей получить в явном виде зависимости показателей СМО от параметров. Наибольшее число аналитических результатов получено для простейшего потока заявок.

Анализ моделей с потоками заявок, отличными от простейших, обычно усложняет математические выкладки и не всегда позволяет получить аналитическое решение в явном виде. Свое название «простейший» поток получил именно благодаря этой особенности.

Заявки могут иметь разные права на начало обслуживания. В этом случае говорят, что заявки неоднородные. Преимущества одних потоков заявок перед другими на начало обслуживания задаются приоритетами.

Важной характеристикой входного потока является коэффициент вариации

где т инт - математическое ожидание длины интервала; о - среднее квадратическое отклонение длины интервала х инт (случайной величины) .

Для простейшего потока (а =-, т = -) имеем v = 1. Для большинства

реальных потоков 0

Каналы (приборы) обслуживания. Основная характеристика канала - длительность обслуживания.

Длительность обслуживания - время нахождения заявки в приборе - в общем случае величина случайная. В случае неоднородной нагрузки СМО длительности обслуживания заявок разных классов могут различаться законами распределений или только средними значениями. При этом обычно предполагается независимость длительностей обслуживания заявок каждого класса.

Часто практики полагают длительность обслуживания заявок распределенной по экспоненциальному закону, что существенно упрощает аналитические выкладки. Это обусловлено тем, что процессы, протекающие в системах с экспоненциальным распределением интервалов времени, являются марковскими процессами:

где ц - интенсивность обслуживания, здесь р = _--; т 0 бсл - матема-

тическое ожидание времени обслуживания.

Кроме экспоненциального распределения встречаются /с-распре- деление Эрланга, гиперэкспоненциальное, треугольное и некоторые другие. Это нас не должно смущать, так как показано, что значение критериев эффективности СМО мало зависит от вида закона распределения времени обслуживания.

При исследовании СМО выпадает из рассмотрения сущность обслуживания, качество обслуживания.

Каналы могут быть абсолютно надежными, т.е. не выходить из строя. Вернее, так может быть принято при исследовании. Каналы могут обладать конечной надежностью. В этом случае модель СМО значительно сложнее.

Эффективность СМО зависит не только от параметров входных потоков и каналов обслуживания, но также и от того, в какой последовательности обслуживаются поступающие заявки, т.е. от способов управления потоками заявок при их входе в систему и направлении на обслуживание.

Способы управления потоками заявок определяются дисциплинами:

  • буферизации;
  • обслуживания.

Дисциплины буферизации и обслуживания могут быть классифицированы по следующим признакам:

  • наличие приоритетов между заявками разных классов;
  • способ вытеснения заявок из очереди (для дисциплин буферизации) и назначения заявок на обслуживание (для дисциплин обслуживания);
  • правило вытеснения или выбора заявок на обслуживание;
  • возможность изменения приоритетов.

Вариант классификации дисциплин буферизации (постановки в очередь) в соответствии с перечисленными признаками представлен на рис. 2.2.

В зависимости от наличия или отсутствия приоритетов между заявками разных классов все дисциплины буферизации могут быть разбиты на две группы: бесприоритетные и приоритетные.

По способу вытеснения заявок из накопителя можно выделить следующие классы дисциплин буферизации:

  • без вытеснения заявок - заявки, поступившие в систему и заставшие накопитель полностью заполненным, теряются;
  • с вытеснением заявки данного класса, т.е. такого же класса, что и поступившая заявка;
  • с вытеснением заявки из класса самого низкого приоритета;
  • с вытеснением заявки из группы классов низких приоритетов.

Рис. 2.2.

Дисциплины буферизации могут использовать следующие правила вытеснения заявок из накопителя:

  • случайное вытеснение;
  • вытеснение последней заявки, т.е. поступившей в систему позже всех;
  • вытеснение «долгой» заявки, т.е. находящейся в накопителе дольше всех поступивших ранее заявок.

На рис. 2.3 представлена классификация дисциплин обслуживания заявок в соответствии с теми же признаками, что и для дисциплин буферизации.

Иногда емкость накопителя в моделях полагают неограниченной, хотя в реальной системе она ограничена. Такое допущение оправдано, когда вероятность потери заявки в реальной системе из-за переполнения емкости накопителя меньше 10 _3 . В этом случае дисциплина практически не влияет на показатели обслуживания заявок.

В зависимости от наличия или отсутствия приоритетов между заявками разных классов все дисциплины обслуживания, как и дисциплины буферизации, могут быть разбиты на две группы: бесприоритет- ные и приоритетные.

По способу назначения заявок на обслуживание дисциплины обслуживания могут быть разделены на дисциплины:

  • одиночного режима;
  • группового режима;
  • комбинированного режима.

Рис. 2.3.

В дисциплинах обслуживания одиночного режима каждый раз на обслуживание назначается только одна заявка, для чего очереди просматриваются после окончания обслуживания предыдущей заявки.

В дисциплинах обслуживания группового режима каждый раз на обслуживание назначается группа заявок одной очереди, для чего просмотр очередей выполняется только после обслуживания всех заявок ранее назначенной группы. Вновь назначенная группа заявок может включать в себя все заявки данной очереди. Заявки назначенной на обслуживание группы последовательно выбираются из очереди и обслуживаются прибором, после чего на обслуживание назначается следующая группа заявок другой очереди в соответствии с заданной дисциплиной обслуживания.

Комбинированный режим - комбинация одиночного и группового режимов, когда часть очередей заявок обрабатывается в одиночном режиме, а другая часть - в групповом.

Дисциплины обслуживания могут использовать следующие правила выбора заявок на обслуживание.

Бесприоритетные (заявки не имеют привилегий на досрочное обслуживание - захват ресурсов):

  • обслуживание в порядке поступления FIFO (first in -first out, первый вошел - первый вышел);
  • обслуживание в обратном порядке - заявка выбирается из очереди в режиме LIFO (last in - first out, последний вошел - первый вышел);
  • обслуживание в случайном порядке - заявка выбирается из очереди в режиме RAND (random - случайным образом);
  • обслуживание в циклическом порядке - заявки выбираются в процессе циклического опроса накопителей в последовательности 1, 2,Н СН - количество накопителей), после чего указанная последовательность повторяется;

Приоритетные (заявки имеют привилегии на досрочное обслуживание - захват ресурсов):

  • с относительными приоритетами - если в процессе текущего обслуживания заявки в систему поступают заявки с более высокими приоритетами, то обслуживание текущей даже бесприоритетной заявки не прерывается, а поступившие заявки направляются в очередь; относительные приоритеты играют роль только в момент окончания текущего обслуживания заявки при выборе из очереди новой заявки на обслуживание.
  • с абсолютными приоритетами - при поступлении заявки с высоким приоритетом обслуживание заявки с низким приоритетом прерывается и на обслуживание направляется поступившая заявка; прерванная заявка может быть возвращена в очередь или удалена из системы; если заявка возвращена в очередь, то ее дальнейшее обслуживание может быть выполнено с прерванного места или заново;
  • со смешанными приоритетами - строгие ограничения на время ожидания в очереди на обслуживание отдельных заявок требуют присвоения им абсолютных приоритетов; вследствие этого время ожидания заявок с низкими приоритетами может оказаться недопустимо большим, хотя отдельные заявки имеют запас по времени ожидания; для выполнения ограничений по всем видам заявок можно наряду с абсолютными приоритетами некоторым заявкам присвоить относительные приоритеты, а остальные обслуживать в бесприоритетном режиме;
  • с чередующимися приоритетами - аналогом относительных приоритетов, приоритет учитывается только в моменты завершения текущего обслуживания группы заявок одной очереди и назначения новой группы на обслуживание;
  • обслуживание по расписанию - заявки разных классов (находящиеся в разных накопителях) выбираются на обслуживание согласно некоторому расписанию, задающему последовательность опроса очередей заявок, например в случае трех классов заявок (накопителей) расписание может иметь вид {2, 1, 3, 3, 1, 2} или {1, 2, 3, 3, 2, 1}.

В компьютерных системах ИМ, как правило, по умолчанию реализуется дисциплина FIFO. Однако они имеют инструментальные средства, которые предоставляют пользователю возможность организовать нужные ему дисциплины обслуживания, в том числе и по расписанию.

Поступающие в СМО заявки делят на классы. В СМО, представляющей собой абстрактную математическую модель, заявки относятся к разным классам в том случае, если они в моделируемой реальной системе различаются хотя бы одним из следующих признаков:

  • длительностью обслуживания;
  • приоритетами.

Если заявки не различаются длительностью обслуживания и приоритетами, они могут быть представлены заявками одного класса, в том числе и при поступлении от разных источников.

Для математического описания дисциплин обслуживания со смешанными приоритетами используется матрица приоритетов, представляющая собой квадратную матрицу Q = (q, ;), i,j - 1,..., Я, Я - число классов заявок, поступающих в систему.

Элемент q (j матрицы задает приоритет заявок класса i по отношению к заявкам класса; и может принимать следующие значения:

  • 0 - нет приоритета;
  • 1 - приоритет относительный;
  • 2 - приоритет абсолютный.

Элементы матрицы приоритетов должны удовлетворять следующим требованиям:

  • q n = 0, так как между заявками одного и того же класса не могут быть установлены приоритеты;
  • если q (j = 1 или 2, то q ^ = 0, так как если заявки класса i имеют приоритет к заявкам класса j, то последние не могут иметь приоритет к заявкам класса i (i,j = 1, ..., Я).

В зависимости от возможности изменения приоритетов в процессе функционирования системы приоритетные дисциплины буферизации и обслуживания делятся на два класса:

  • 1) со статическими приоритетами, которые не изменяются со временем;
  • 2) с динамическими приоритетами, которые могут изменяться в процессе функционирования системы в зависимости от разных факторов, например при достижении некоторого критического значения длины очереди заявок какого-либо класса, не имеющего приоритета или обладающего низким приоритетом, ему может быть предоставлен более высокий приоритет.

В компьютерных системах ИМ обязательно имеется единственный элемент (объект), через который, и только через него, вводятся заявки в модель. По умолчанию все вводимые заявки бесприоритетные. Но есть возможности присвоения приоритетов в последовательности 1, 2, ..., в том числе и в ходе выполнения модели, т.е. в динамике.

Выходящий поток - это поток обслуженных заявок, покидающих СМО. В реальных системах заявки проходят через несколько СМО: транзитная связь, производственный конвейер и т.п. В этом случае выходящий поток является входящим потоком для следующей СМО.

Входящий поток первой СМО, пройдя через последующие СМО, искажается, и это затрудняет аналитическое моделирование. Однако следует иметь в виду, что при простейшем входном потоке и экспоненциальном обслуживании (т.е. в марковских системах) выходной поток тоже простейший. Если время обслуживания имеет не экспоненциальное распределение, то выходящий поток не только не простейший, но и не рекуррентный.

Заметим, что интервалы времени между заявками выходящего потока - это не то же самое, что интервалы обслуживания. Ведь может оказаться, что после окончания очередного обслуживания СМО какое-то время простаивает из-за отсутствия заявок. В этом случае интервал выходящего потока состоит из времени незанятости СМО и интервала обслуживания первой пришедшей после простоя заявки.

В СМО кроме выходящего потока обслуженных заявок может быть и поток необслуженных заявок. Если в такую СМО поступает рекуррентный поток, а обслуживание - экспоненциальное, то и поток необслуженных заявок - рекуррентный.

Очереди свободных каналов. В многоканальных СМО могут образовываться очереди свободных каналов. Количество свободных каналов - величина случайная. Исследователя могут интересовать различные характеристики этой случайной величины. Обычно это среднее число каналов, занятых обслуживанием за интервал исследования, и их коэффициенты загрузки.

Как мы уже отмечали ранее, в реальных объектах заявки последовательно проходят обслуживание в нескольких СМО.

Конечное множество последовательно взаимосвязанных СМО, обрабатывающих циркулирующие в них заявки, называется сетью массового обслуживания (СеМО ) (рис. 2.4, а).


Рис. 2.4.

СеМО называют также многофазными СМО.

Пример построения ИМ СеМО мы рассмотрим позже.

Основными элементами СеМО являются узлы (У) и источники (генераторы) заявок (Г).

Узел сети - это система массового обслуживания.

Источник - генератор заявок, поступающих в сеть и требующих определенных этапов обслуживания в узлах сети.

Для упрощенного изображения СеМО используется граф.

Граф СеМО - ориентированный граф (орграф), вершины которого соответствуют узлам СеМО, а дуги отображают переходы заявок между узлами (рис. 2.4, б).

Итак, мы рассмотрели основные понятия СМО. Но при разработке компьютерных систем ИМ и их совершенствовании также непременно используется огромный творческий потенциал, содержащийся на настоящее время в аналитическом моделировании СМО.

Для лучшего восприятия этого творческого потенциала в первом приближении остановимся на классификации моделей СМО.

Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

  1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
  2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

Теория массового обслуживания – специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

В качестве характеристик СМО рассматриваются:

  • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
  • среднее время «простоя» отдельных каналов и системы в целом;
  • среднее время ожидания в очереди;
  • вероятность того, что поступившая заявка будет немедленно обслужена;
  • закон распределения длины очереди и другие.

Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

3.1 Модели систем массового обслуживания.

Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

a - распределение входного потока заявок;

b - распределение выходного потока заявок;

c – конфигурация обслуживающего механизма;

d – дисциплина очереди;

e – блок ожидания;

f – емкость источника.

Теперь рассмотрим подробнее каждую характеристику.

Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

  1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
  2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
  3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

Таким образом, можно выделить одно- и многоканальные СМО.

С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

  1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
  2. ПОСППО (последним пришел – первым обслуживаешься);
  3. СОЗ (случайный отбор заявок) – из банка данных.
  4. ПР – обслуживание с приоритетом.

Длина очереди может быть

  • неограничена – тогда говорят о системе с чистым ожиданием;
  • равна нулю – тогда говорят о системе с отказами;
  • ограничена по длине (система смешанного типа).

Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

3.2 Входной поток требований.

С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

Поток называется простейшим , если он стационарный, без последействия и ординарный.

Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

Следствие 1 . Простейший поток также называется пуассоновским.

Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

Рассмотрим ПРИМЕР.

В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

Решение.

По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

^

3.3 Состояние системы. Матрица и граф переходов.

В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

Е 0 – все каналы свободны;

Е 1 – занят один канал;

Е n – заняты все каналы;

Е n +1 – заняты все каналы и одна заявка в очереди;

Е n + m – заняты все каналы и все места в очереди.

Аналогичная система с отказами может находиться в состояниях E 0 E n .

Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

Рисунок 3.1 – граф переходов

Сост. Е 0 Е 1 Е 2
Е 0 Р 0,0 Р 0,1 Р 0,2
Е 1 Р 1,0 Р 1,1 Р 1,2
Е 2 Р 2,0 Р 2,2 Р 2,2

Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

Так как система обязательно перейдет из одного

состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

3.4 Одноканальные СМО.

3.4.1 Одноканальные СМО с отказами.

Будем рассматривать системы, удовлетворяющие требованиям:

(Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

Таким образом, получим матрицу переходов:

Сост. Е 0 Е 1
Е 0 1-l* Dt l* Dt
Е 1 m* Dt 1-m* Dt

Вероятность простоя и отказа системы.

Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
изображен на рисунке 3.2.

Асимптотой графика является прямая
.

Очевидно, начиная с некоторого момента t ,


1

Рисунок 3.2

Окончательно получим, что
и
, где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

Стационарный режим работы и коэффициент загрузки системы.

Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
,
. Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
.

3.4.2 Одноканальные СМО с неограниченной длиной очереди.

Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

решая которую найдем, что . Таким образом, при условии, что y <1, получим
Окончательно,
и
– вероятность нахождения СМО в состоянии Е k в случайный момент времени.

Средние характеристики системы.

За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

  • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
  • v – длину очереди;
  • w – время ожидания начала обслуживания;
  • w 0 – общее время нахождения в системе.

Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

– среднее число заявок в системе.

– средняя длина очереди.

– среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

– среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
, средняя длина очереди
, среднее время ожидания начала обслуживания
часа = 50 мин, и, наконец, среднее время нахождения в системе
час.

3.4.3 Одноканальные СМО смешанного типа.

Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
, т.е. одна заявка обслуживается и еще s заявок – в очереди.

Вероятность простоя системы равна
,

а вероятность отказа системы -
.

Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
. Для системы с чистым ожиданием
. Для системы с ограниченной длиной очереди
. Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

3.5 Многоканальные СМО.

3.5.1 Многоканальные СМО с отказами.

Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
, где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

, k=0, 1, …

Функция стоимости.

Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
. Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

Рисунок 3.3

Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

ПРИМЕР.

Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

Решение. y = 2/1=2. с 1 =7, с 2 =2.

Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
. Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

Предположим, что s =3. Тогда
, С(3) = с 1 *l* p 3 2 *
=5.79.

Предположим, что имеется четыре канала, т.е. s =4. Тогда
,
, С(4) = с 1 *l* p 4 2 *
=5.71.

Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
, С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

3.5.2 Многоканальные СМО с очередью.

Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

P(w>0) – вероятность ожидания начала обслуживания,
.

Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

ПРИМЕР.

СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
,
.

Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

3.6 Вопросы для самоконтроля

  1. Предмет и задачи теории массового обслуживания.
  2. СМО, их модели и обозначения.
  3. Входной поток требований. Интенсивность входного потока.
  4. Состояние системы. Матрица и граф переходов.
  5. Одноканальные СМО с отказами.
  6. Одноканальные СМО с очередью. Характеристики.
  7. Стационарный режим работы. Коэффициент загрузки системы.
  8. Многоканальные СМО с отказами.
  9. Оптимизация функции стоимости.
  10. Многоканальные СМО с очередью. Характеристики.

3.7 Упражнения для самостоятельной работы

  1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
  2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
  3. Время обслуживания в СМО подчиняется экспоненциальному закону,
    m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
  4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
  5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
  6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
  7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
  8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
  9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
  10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
  11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
  12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
  13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?

Примеры решения задач систем массового обслуживания

Требуется решить задачи 1–3. Исходные данные приведены в табл. 2–4.

Некоторые обозначения, применяемые в теории массового обслуживания, для формул:

n – число каналов в СМО;

λ – интенсивность входящего потока заявок П вх;

v – интенсивность выходящего потока заявок П вых;

μ – интенсивность потока обслуживания П об;

ρ – показатель нагрузки системы (трафик);

m – максимальное число мест в очереди, ограничивающее длину очереди заявок;

i – число источников заявок;

p к – вероятность k-го состояния системы;

p о – вероятность простаивания всœей системы, т. е. вероятность того, что всœе каналы свободны;

p сист – вероятность принятия заявки в систему;

p отк – вероятность отказа заявке в принятии ее в систему;

р об – вероятность того, что заявка будет обслужена;

А – абсолютная пропускная способность системы;

Q – относительная пропускная способность системы;

оч – среднее число заявок в очереди;

об – среднее число заявок под обслуживанием;

сист – среднее число заявок в системе;

оч – среднее время ожидания заявки в очереди;

об – среднее время обслуживания заявки, относящееся только к обслуженным заявкам;

сис – среднее время пребывания заявки в системе;

ож – среднее время, ограничивающее ожидание заявки в очереди;

– среднее число занятых каналов.

Абсолютная пропускная способность СМО А – среднее число заявок, ĸᴏᴛᴏᴩᴏᴇ может обслужить система за единицу времени.

Относительная пропускная способность СМО Q – отношение среднего числа заявок, обслуживаемых системой в единицу времени, к среднему числу поступающих за это время заявок.

При решении задач массового обслуживания крайне важно придерживаться нижеприведенной последовательности:

1) определœение типа СМО по табл. 4.1;

2) выбор формул в соответствии с типом СМО;

3) решение задачи;

4) формулирование выводов по задаче.

1.Схема гибели и размножения. Мы знаем, что, имея в распоряжении размеченный граф состояний, можно легко написать уравнения Колмогорова для вероятностей состояний, а также написать и решить алгебраические уравнения для финальных вероятностей. Стоит сказать, что для некоторых случаев удается последние уравнения

решить заранее, в буквенном виде. В частности, это удается сделать, в случае если граф состояний системы представляет собой так называемую ʼʼсхему гибели и размноженияʼʼ.

Граф состояний для схемы гибели и размножения имеет вид, показанный на рис. 19.1. Особенность этого графа в том, что всœе состояния системы можно вытянуть в одну цепочку, в которой каждое из средних состояний (S 1 , S 2 ,…,S n-1) связано прямой и обратной стрелкой с каждым из сосœедних состояний - правым и левым, а крайние состояния (S 0 , S n) - только с одним сосœедним состоянием. Термин ʼʼсхема гибели и размноженияʼʼ ведет начало от биологических задач, где подобной схемой описывается изменение численности популяции.

Схема гибели и размножения очень часто встречается в разных задачах практики, в частности - в теории массового обслуживания, в связи с этим полезно, один раз и навсœегда, найти для нее финальные вероятности состояний.

Предположим, что всœе потоки событии, переводящие систему по стрелкам графа,- простейшие (для краткости будем называть и систему S и протекающий в ней процесс - простейшими).

Пользуясь графом рис. 19.1, составим и решим алгебраические уравнения для финальных вероятностей состоянии), существование вытекает из того, что из каждого состояния можно перейти в каждое другое, в число состояний конечно). Для первого состояния S 0 имеем:

(19.1)

Для второго состояния S 1:

В силу (19.1) последнее равенство приводится к виду

где k принимает всœе значения от 0 до п. Итак, финальные вероятности p 0 , p 1 , ..., р n удовлетворяют уравнениям

(19.2)

кроме того, нужно учесть нормировочное условие

p 0 + p 1 + p 2 +…+ p n =1. (19.3)

Решим эту систему уравнений. Из первого уравнения (19.2)выразим p 1 через р 0 :

p 1 = p 0. (19.4)

Из второго, с учетом (19.4), получим:

(19.5)

‣‣‣ из третьего, с учетом (19.5),

(19.6)

и вообще, для любого k (от 1 до n ):

(19.7)

Обратим внимание на формулу (19.7). В числителœе стоит произведение всœех интенсивностей, стоящих у стрелок, ведущих слева направо (с начала и до данного состояния S k), а в знаменателœе - произведение всœех интенсивностей, стоящих у стрелок, ведущих справа налево (с начала и до S k).

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, всœе вероятности состояний р 0 , p 1 , ..., р n выражены через одну из них (р 0). Подставим эти выражения в нормировочное условие (19.3). Получим, вынося за скобку р 0:

отсюда получим выражение для р 0 :

(скобку мы возвели в степень -1, чтобы не писать двухэтажных дробей). Все остальные вероятности выражены через р 0 (см. формулы (19.4) - (19.7)). Заметим, что коэффициенты при р 0 в каждой из них представляют из себяне что иное, как последовательные члены ряда, стоящего после единицы в формуле (19.8). Значит, вычисляя р 0 , мы уже нашли всœе эти коэффициенты.

Полученные формулы очень полезны при решении простейших задач теории массового обслуживания.

^ 2. Формула Литтла. Теперь мы выведем одну важную формулу, связывающую (для предельного, стационарного режима) среднее число заявок L сист, находящихся в системе массового обслуживания (т. е. обслуживаемых или стоящих в очереди), и среднее время пребывания заявки в системе W сист.

Рассмотрим любую СМО (одноканальную, многоканальную, марковскую, немарковскую, с неограниченной или с ограниченной очередью) и связанные с нею два потока событий: поток заявок, прибывающих в СМО, и поток заявок, покидающих СМО. В случае если в системе установился предельный, стационарный режим, то среднее число заявок, прибывающих в СМО за единицу времени, равно среднему числу заявок, покидающих ее: оба потока имеют одну и ту же интенсивность λ.

Обозначим: X(t} - число заявок, прибывших в СМО до момента t. Y (t ) - число заявок покинувших СМО

до момента t. И та͵ и другая функции являются случайными и меняются скачком (увеличиваются на единицу) в моменты приходов заявок (X (t )) и уходов заявок (Y(t)). Вид функций X(t) и Y(t) показан на рис. 19.2; обе линии - ступенчатые, верхняя - X(t), нижняя-Y(t). Очевидно, что для любого момента t их разность Z (t ) = X(t) - Y(t) есть не что иное, как число заявок, находящихся в СМО. Когда линии X(t) и Y(t) сливаются, в системе нет заявок.

Рассмотрим очень большой промежуток времени Т (мысленно продолжив график далеко за пределы чертежа) и вычислим для него среднее число заявок, находящихся в СМО. Оно будет равно интегралу от функции Z(t) на этом промежутке, делœенному на длину интервала Т:

L сист. = . (19.9) о

Но данный интеграл представляет собой не что иное, как площадь фигуры, заштрихованной на рис. 19.2. Разглядим хорошенько данный рисунок. Фигура состоит из прямоугольников, каждый из которых имеет высоту, равную единице, и основание, равное времени пребывания в системе соответствующей заявки (первой, второй и т. д.). Обозначим эти времена t 1 , t 2 ,... Правда, под конец промежутка Т некоторые прямоугольники войдут в заштрихованную фигуру не полностью, а частично, но при достаточно большом Т эти мелочи не будут играть роли. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно считать, что

(19.10)

где сумма распространяется на всœе заявки, пришедшие за время Т.

Разделим правую и левую часть (.19.10) на длину интервала Т. Получим, с учетом (19.9),

L сист. = . (19.11)

Разделим и умножим правую часть (19.11) на интенсивность X:

L сист. = .

Но величина Тλ есть не что иное, как среднее число заявок, пришедших за время ^ Т. В случае если мы разделим сумму всœех времен t i на среднее число заявок, то получим среднее время пребывания заявки в системе W сист. Итак,

L сист. = λW сист. ,

W сист. = . (19.12)

Это и есть замечательная формула Литтла: для любой СМО, при любом характере потока заявок, при любом распределœении времени обслуживания, при любой дисциплинœе обслуживания среднее время пребывания заявки в системе равно среднему числу заявок в системе, делœенному на интенсивность потока заявок.

Точно таким же образом выводится вторая формула Литтла, связывающая среднее время пребывания заявки в очереди ^ W оч и среднее число заявок в очереди L оч:

W оч = . (19.13)

Для вывода достаточно вместо нижней линии на рис. 19.2 взять функцию U(t) - количество заявок, ушедших до момента t не из системы, а из очереди (если заявка, пришедшая в систему, не становится в очередь, а сразу идет под обслуживание, можно всœе же считать, что она становится в очередь, но находится в ней нулевое время).

Формулы Литтла (19.12) и (19.13) играют большую роль в теории массового обслуживания. К сожалению, в большинстве существующих руководств эти формулы (доказанные в общем виде сравнительно недавно) не приводятся 1).

§ 20. Простейшие системы массового обслуживания и их характеристики

В этом параграфе мы рассмотрим, некоторые простейшие СМО и выведем выражения для их характеристик (показателœей эффективности). При этом мы продемонстрируем основные методические приемы, характерные для элементарной, ʼʼмарковскойʼʼ теории массового обслуживания. Мы не будем гнаться за количеством образцов СМО, для которых будут выведены конечные выражения характеристик; данная книга - не справочник по теории массового обслуживания (такую роль гораздо лучше выполняют специальные руководства). Наша цель - познакомить читателя с некоторыми ʼʼмаленькими хитростямиʼʼ, облегчающими путь сквозь теорию массового обслуживания, которая в ряде имеющихся (даже претендующих на популярность) книг может показаться бессвязным набором примеров.

Все потоки событий, переводящие СМО из состояния в состояние, в данном параграфе мы будем считать простейшими (не оговаривая это каждый раз специально). В их числе будет и так называемый ʼʼпоток обслуживанииʼʼ. Под ним разумеется поток заявок, обслуживаемых одним непрерывно занятым каналом. В этом потоке интервал между событиями, как и всœегда в простейшем потоке, имеет показательное распределœение (во многих руководствах вместо этого говорят: ʼʼвремя обслуживания - показательноеʼʼ, мы и сами в дальнейшем будем пользоваться таким термином).

1) В популярной книжке дан несколько иной, по сравнению с вышеизложенным, вывод формулы Литтла. Вообще, знакомство с этой книжкой (ʼʼБеседа втораяʼʼ) полезно для первоначального ознакомления с теорией массового обслуживания.

В данном параграфе показательное распределœение времени обслуживания будет само собой разуметься, как всœегда для ʼʼпростейшейʼʼ системы.

Характеристики эффективности рассматриваемых СМО мы будем вводить по ходу изложения.

^ 1. п -канальная СМО с отказами (задача Эрланга). Здесь мы рассмотрим одну из первых по времени, ʼʼклассическихʼʼ задач теории массового обслуживания;

эта задача возникла из практических нужд телœефонии и была решена в начале нашего века датским математиком Эрлантом. Задача ставится так: имеется п каналов (линий связи), на которые поступает поток заявок с интенсивностью λ. Поток обслуживании имеет интенсивность μ (величина, обратная среднему времени обслуживания t об). Найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

^ А - абсолютную пропускную способность, т. е. среднее число заявок, обслуживаемых в единицу времени;

Q - относительную пропускную способность, т. е. среднюю долю пришедших заявок, обслуживаемых системой;

^ Р отк - вероятность отказа, т. е. того, что заявка покинœет СМО не обслуженной;

k - среднее число занятых каналов.

Решение. Состояния системы ^ S (СМО) будем нумеровать по числу заявок, находящихся в системе (в данном случае оно совпадает с числом занятых каналов):

S 0 - в СМО нет ни одной заявки,

S 1 - в СМО находится одна заявка (один канал занят, остальные свободны),

S k - в СМО находится k заявок (k каналов заняты, остальные свободны),

S n - в СМО находится п заявок (всœе n каналов заняты).

Граф состояний СМО соответствует схеме гибели в размножения (рис. 20.1). Разметим данный граф - проставим у стрелок интенсивности потоков событий. Из S 0 в S 1 систему переводит поток заявок с интенсивностью λ (как только приходит заявка, система перескакивает из S 0 в S 1). Тот же поток заявок переводит

систему из любого левого состояния в сосœеднее правое (см. верхние стрелки на рис. 20.1).

Проставим интенсивности у нижних стрелок. Пусть система находится в состоянии ^ S 1 (работает один канал). Он производит μ обслуживании в единицу времени. Проставляем у стрелки S 1 → S 0 интенсивность μ. Теперь представим себе, что система находится в состоянии S 2 (работают два канала). Чтобы ей перейти в S 1 , нужно, чтобы либо закончил обслуживание первый канал, либо второй; суммарная интенсивность их потоков обслуживании равна 2μ; проставляем ее у соответствующей стрелки. Суммарный поток обслуживании, даваемый тремя каналами, имеет интенсивность 3μ, k каналами - kμ. Проставляем эти интенсивности у нижних стрелок на рис. 20.1.

А теперь, зная всœе интенсивности, воспользуемся уже готовыми формулами (19.7), (19.8) для финальных вероятностей в схеме гибели и размножения. По формуле (19.8) получим:

Члены разложения будут представлять собой коэффициенты при р 0 в выражениях для p 1

Заметим, что в формулы (20.1), (20.2) интенсивности λ и μ входят не по отдельности, а только в виде отношения λ/μ. Обозначим

λ/μ = ρ (20.3)

и будем называть величину р ʼʼприведенной интенсивностью потока заявокʼʼ. Ее смысл-среднее число заявок, приходящее за среднее время обслуживания одной заявки. Пользуясь этим обозначением, перепишем формулы (20.1), (20.2) в виде:

Формулы (20.4), (20.5) для финальных вероятностей состояний называются формулами Эрланга - в честь основателя теории массового обслуживания. Большинство других формул этой теории (сегодня их больше, чем грибов в лесу) не носит никаких специальных имен.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, финальные вероятности найдены. По ним мы вычислим характеристики эффективности СМО. Сначала найдем ^ Р отк . - вероятность того, что пришедшая заявка получит отказ (не будет обслужена). Для этого нужно, чтобы всœе п каналов были заняты, значит,

Р отк = р n = . (20.6)

Отсюда находим относительную пропускную способность - вероятность того, что заявка будет обслужена:

Q = 1 – P отк. = 1 - (20.7)

Абсолютную пропускную способность получим, умножая интенсивность потока заявок λ, на Q:

A = λQ = λ. (20.8)

Осталось только найти среднее число занятых каналов k. Эту величину можно было бы найти ʼʼвпрямуюʼʼ, как математическое ожидание дискретной случайной величины с возможными значениями 0, 1, ..., п и вероятностями этих значений р 0 р 1 , ..., р n:

k = 0 · р 0 + 1 · p 1 + 2 · р 2 + ... + п · р n .

Подставляя сюда выражения (20.5) для р k , (k = 0, 1, ..., п) и выполняя соответствующие преобразования, мы, в конце концов, получили бы верную формулу для k. Но мы выведем ее гораздо проще (вот она, одна из ʼʼмаленьких хитростейʼʼ!) В самом делœе, нам известна абсолютная пропускная способность А. Это - не что иное, как интенсивность потока обслуженных системой заявок. Каждый занятый i .шал в единицу времени обслуживает в среднем |л заявок. Значит, среднее число занятых каналов равно

k = A/μ, (20.9)

или, учитывая (20.8),

k = (20.10)

Рекомендуем читателю самостоятельно решить пример.
Размещено на реф.рф
Имеется станция связи с тремя каналами (n = 3), интенсивность потока заявок λ = 1,5 (заявки в минуту); среднее время обслуживания одной заявки t об = 2 (мин.), всœе потоки событий (как и во всœем этом параграфе) - простейшие. Найти финальные вероятности состояний и характеристики эффективности СМО: А, Q, P отк, k. На всякий случай сообщаем ответы: p 0 = 1/13, p 1 = 3/13, p 2 = 9/26, р 3 = 9/26 ≈ 0,346,

А ≈ 0,981, Q ≈ 0,654, P отк ≈ 0,346, k ≈ 1,96.

Из ответов видно, между прочим, что наша СМО в значительной мере перегружена: из трех каналов занято в среднем около двух, а из поступающих заявок около 35% остаются не обслуженными. Предлагаем читателю, в случае если он любопытен и нелœенив, узнать: сколько потребуется каналов для того, чтобы удовлетворить не менее 80% поступающих заявок? И какая доля каналов при этом будет простаивать?

Тут уже проглядывает некоторый намек на оптимизацию. В самом делœе, содержание каждого канала в единицу времени обходится в какую-то сумму. Вместе с тем, каждая обслуженная заявка приносит какой-то доход. Умножая данный доход на среднее число заявок А, обслуживаемых в единицу времени, мы получим средний доход от СМО в единицу времени. Естественно, при увеличении числа каналов данный доход растет, но растут и расходы, связанные с содержанием каналов. Что перевесит - увеличение доходов или расходов? Это зависит от условий операции, от ʼʼплаты за обслуживание заявкиʼʼ и от стоимости содержания канала. Зная эти величины, можно найти оптимальное число каналов, наиболее эффективное экономически. Мы такой задачи решать не будем, предоставляя всœе тому же ʼʼнелœенивому и любопытному читателюʼʼ придумать пример и решить. Вообще, придумывание задач больше развивает, чем решение уже поставленных кем-то.

^ 2. Одноканальная СМО с неограниченной очередью. На практике довольно часто встречаются одноканальные СМО с очередью (врач, обслуживающий пациентов; телœефон-автомат с одной будкой; ЭВМ, выполняющая заказы пользователœей). В теории массового обслуживания одноканальные СМО с очередью также занимают особое место (именно к таким СМО относится большинство полученных до сих пор аналитических формул для немарковских систем). По этой причине мы уделим одноканальной СМО с очередью особое внимание.

Пусть имеется одноканальная СМО с очередью, на которую не наложено никаких ограничений (ни по длинœе очереди, ни по времени ожидания). На эту СМО поступает поток заявок с интенсивностью λ; поток обслуживании имеет интенсивность μ, обратную среднему времени обслуживания заявки t об. Требуется найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

L сист. - среднее число заявок в системе,

W сист. - среднее время пребывания заявки в системе,

^ L оч - среднее число заявок в очереди,

W оч - среднее время пребывания заявки в очереди,

P зан - вероятность того, что канал занят (степень загрузки канала).

Что касается абсолютной пропускной способности А и относительной Q, то вычислять их нет нужнобности:

в силу того, что очередь неограниченна, каждая заявка рано или поздно будет обслужена, в связи с этим А = λ, по той же причинœе Q = 1.

Решение. Состояния системы, как и раньше, будем нумеровать по числу заявок, находящихся в СМО:

S 0 - канал свободен,

S 1 - канал занят (обслуживает заявку), очереди нет,

S 2 - канал занят, одна заявка стоит в очереди,

S k - канал занят, k - 1 заявок стоят в очереди,

Теоретически число состояний ничем не ограничено (бесконечно). Граф состоянии имеет вид, показанный на рис. 20.2. Это - схема гибели и размножения, но с бесконечным числом состояний. По всœем стрелкам поток заявок с интенсивностью λ переводит систему слева направо, а справа налево - поток обслуживании с интенсивностью μ.

Прежде всœего спросим себя, а существуют ли в данном случае финальные вероятности? Ведь число состояний системы бесконечно, и, в принципе, при t → ∞ очередь может неограниченно возрастать! Да, так оно и есть: финальные вероятности для такой СМО существуют не всœегда, а только когда система не перегружена. Можно доказать, что если ρ строго меньше единицы (ρ< 1), то финальные вероятности существуют, а при ρ ≥ 1 очередь при t → ∞ растет неограниченно. Особенно ʼʼнепонятнымʼʼ кажется данный факт при ρ = 1. Казалось бы, к системе не предъявляется невыполнимых требований: за время обслуживания одной заявки приходит в среднем одна заявка, и всœе должно быть в порядке, а вот на делœе - не так. При ρ = 1 СМО справляется с потоком заявок, только если поток данный - регулярен, и время обслуживания - тоже не случайное, равное интервалу между заявками. В этом ʼʼидеальномʼʼ случае очереди в СМО вообще не будет, канал будет непрерывно занят и будет регулярно выпускать обслуженные заявки. Но стоит только потоку заявок или потоку обслуживании стать хотя бы чуточку случайными - и очередь уже будет расти до бесконечности. На практике этого не происходит только потому, что ʼʼбесконечное число заявок в очередиʼʼ - абстракция. Вот к каким грубым ошибкам может привести замена случайных величин их математическими ожиданиями!

Но вернемся к нашей одноканальной СМО с неограниченной очередью. Строго говоря, формулы для финальных вероятностей в схеме гибели и размножения выводились нами только для случая конечного числа состояний, но позволим себе вольность - воспользуемся ими и для бесконечного числа состояний. Подсчитаем финальные вероятности состояний по формулам (19.8), (19.7). В нашем случае число слагаемых в формуле (19.8) будет бесконечным. Получим выражение для р 0:

p 0 = -1 =

= (1 + р + р 2 + ... + р k +… .) -1 . (20.11)

Ряд в формуле (20.11) представляет собой геометрическую прогрессию. Мы знаем, что при ρ < 1 ряд сходится - это бесконечно убывающая геометрическая прогрессия со знаменателœем р.
Размещено на реф.рф
При р ≥ 1 ряд расходится (что является косвенным, хотя и не строгим доказательством того, что финальные вероятности состояний р 0 , p 1 , ..., p k , ... существуют только при р<1). Теперь предположим, что это условие выполнено, и ρ <1. Суммируя прогрессию в (20.11), имеем

1 + ρ + ρ 2 + ... + ρ k + ... = ,

p 0 = 1 - ρ. (20.12)

Вероятности р 1 , р 2 , ..., р k , ... найдутся по формулам:

p 1 = ρp 0 , p 2 = ρ 2 p 0 ,…,p k = ρp 0 , ...,

откуда, с учетом (20.12), найдем окончательно:

p 1 = ρ (1 - ρ), p 2 = ρ 2 (1 - ρ), . . . , p k = ρ k (1 - ρ), . . .(20.13)

Как видно, вероятности p 0 , p 1 , ..., p k , ... образуют геометрическую прогрессию со знаменателœем р.
Размещено на реф.рф
Как это ни странно, максимальная из них р 0 - вероятность того, что канал будет вообще свободен. Как бы ни была нагружена система с очередью, в случае если только она вообще справляется с потоком заявок (ρ<1), самое вероятное число заявок в системе будет 0.

Найдем среднее число заявок в СМО ^ L сист . . Тут придется немного повозиться. Случайная величина Z - число заявок в системе - имеет возможные значения 0, 1, 2, .... k, ... с вероятностями p 0 , р 1 , р 2 , ..., p k , ... Ее математическое ожидание равно

L сист = 0 · p 0 + 1 · p 1 + 2 · p 2 +…+k · p k +…= (20.14)

(сумма берется не от 0 до ∞, а от 1 до ∞, так как нулевой член равен нулю).

Подставим в формулу (20.14) выражение для p k (20.13):

L сист. =

Теперь вынесем за знак суммы ρ (1-ρ):

L сист. = ρ (1-ρ)

Тут мы опять применим ʼʼмаленькую хитростьʼʼ: k ρ k -1 есть не что иное, как производная по ρ от выражения ρ k ; значит,

L сист. = ρ (1-ρ)

Меняя местами операции дифференцирования п суммирования, получим:

L сист. = ρ (1-ρ) (20.15)

Но сумма в формуле (20.15) есть не что иное, как сумма бесконечно убывающей геометрической прогрессии с первым членом ρ и знаменателœем ρ; эта сумма

равна , а ее производная .Подставляя это выражение в (20.15), получим:

L сист = . (20.16)

Ну, а теперь применим формулу Литтла (19.12) и найдем среднее время пребывания заявки в системе:

W сист = (20.17)

Найдем среднее число заявок в очереди L оч. Будем рассуждать так: число заявок в очереди равно числу заявок в системе минус число заявок, находящихся под обслуживанием. Значит (по правилу сложения математических ожиданий), среднее число заявок в очереди L оч равно среднему числу заявок в системе L сист минус среднее число заявок под обслуживанием. Число заявок под обслуживанием должна быть либо нулем (если канал свободен), либо единицей (если он занят). Математическое ожидание такой случайной величины равно вероятности того, что канал занят (мы ее обозначили Р зан). Очевидно, Р зан равно единице минус вероятность р 0 того, что канал свободен:L внеш и среднее время этого ожидания W внеш (две последние величины связаны формулой Литтла). Наконец, найдите суммарный суточный штраф Ш, который придется заплатить станции за простои составов на внешних путях, в случае если за один час простоя одного состава станция платит штраф а (руб.). На всякий случай сообщаем ответы: L сист. = 2 (состава), W сист. = 1 (час), L оч = 4/3 (состава), W оч = 2/3 (часа), L внеш = 16/27 (состава), W внеш = 8/27 ≈ 0,297 (часа). Средний суточный штраф Ш за ожидание составов на внешних путях получим, перемножая среднее число составов, прибывающих на станцию за сутки, среднее время ожидания состава на внешних путях и часовой штраф а : Ш ≈ 14,2а .

^ 3. re-канальная СМО с неограниченной очередью. Совершенно аналогично задаче 2, но чуточку более сложно, решается задача об n -канальной СМО с неограниченной очередью. Нумерация состояний - опять по числу заявок, находящихся в системе:

N <1. В случае если ρ/n ≥ 1, очередь растет до бесконечности.

Предположим, что условие ρ/n < 1 выполнено, и финальные вероятности существуют. Применяя всœе те же формулы (19.8), (19.7) для схемы гибели и размножения, найдем эти финальные вероятности. В выражении для р 0 будет стоять ряд членов, содержащих факториалы, плюс сумма бесконечно убывающей геометрической прогрессии со знаменателœем ρ/n . Суммируя ее, найдем

(20.22)

Теперь найдем характеристики эффективности СМО. Из них легче всœего находится среднее число занятых каналов k == λ/μ, = ρ (это вообще справедливо для любой СМО с неограниченной очередью). Найдем среднее число заявок в системе L сист и среднее число заявок в очереди L оч. Из них легче вычислить второе, по формуле

L оч =

выполняя соответствующие преобразования по образцу задачи 2

(с дифференцированием ряда), получим:

L оч = (20.23)

Прибавляя к нему среднее число заявок под обслуживанием (оно же - среднее число занятых каналов) k = ρ, получим:

L сист = L оч + ρ. (20.24)

Деля выражения для L оч и L сист на λ, по формуле Литтла получим средние времена пребывания заявки в очереди и в системе:

(20.25)

А теперь решим любопытный пример.
Размещено на реф.рф
Желœезнодорожная касса по продаже билетов с двумя окошками представляет собой двухканальную СМО с неограниченной очередью, устанавливающейся сразу к двум окошкам (если одно окошко освобождается, ближайший в очереди пассажир его занимает). Касса продает билеты в два пункта: А и В. Интенсивность потока заявок (пассажиров, желающих купить билет) для обоих пунктов А и В одинакова: λ А = λ В = 0,45 (пассажира в минуту), а в сумме они образуют общий поток заявок с интенсивностью λ А + λ В = 0,9. Кассир тратит на обслуживание пассажира в среднем две минуты. Опыт показывает, что у кассы скапливаются очереди, пассажиры жалуются на медленность обслуживания, Поступило рационализаторское предложение: вместо одной кассы, продающей билеты и в А и в В, создать две специализированные кассы (по одному окошку в каждой), продающие билеты одна - только в пункт А , другая - только в пункт В. Разумность этого предложения вызывает споры - кое-кто утверждает, что очереди останутся прежними. Требуется проверить полезность предложения расчетом. Так как мы умеем считать характеристики только для простейших СМО, допустим, что всœе потоки событий - простейшие (на качественной стороне выводов это не скажется).

Ну, что же, возьмемся за дело. Рассмотрим два варианта организации продажи билетов - существующий и предлагаемый.

Вариант I (существующий). На двухканальную СМО поступает поток заявок с интенсивностью λ = 0,9; интенсивность потока обслуживании μ = 1/2 = 0,5; ρ = λ/μ = l,8. Так как ρ/2 = 0,9<1, финальные вероятности существуют. По первой формуле (20.22) находим р 0 ≈ 0,0525. Среднее, число заявок в очереди находим по формуле (20.23): L оч ≈ 7,68; среднее время, проводимое заявкой в очереди (по первой из формул (20.25)), равно W оч ≈ 8,54 (мин.).

Вариант II (предлагаемый). Надо рассмотреть две одноканальные СМО (два специализированных окошка); на каждую поступает поток заявок с интенсивностью λ = 0,45; μ. по-прежнему равно 0,5; ρ = λ/μ = 0,9<1; финальные вероятности существуют. По формуле (20.20) находим среднюю длину очереди (к одному окошку) L оч = 8,1.

Вот тебе и раз! Длина очереди, оказывается, не только не уменьшилась, а увеличилась! Может быть, уменьшилось среднее время ожидания в очереди? Посмотрим. Деля L оч на λ = 0,45, получим W оч ≈ 18 (минут).

Вот так рационализация! Вместо того чтобы уменьшиться, и средняя длина очереди, и среднее время ожидания в ней увеличились!

Давайте попробуем догадаться, почему так произошло? Пораскинув мозгами, приходим к выводу: произошло это потому, что в первом варианте (двухканальная СМО) меньше средняя доля времени, которую простаивае

Примеры решения задач систем массового обслуживания - понятие и виды. Классификация и особенности категории "Примеры решения задач систем массового обслуживания" 2017, 2018.

Ниже будут рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

Одноканальная смо с отказами

Дано : система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях:S 0 – канал свободен;S 1 – канал занят. Переход изS 0 вS 1 связан с появлением заявки и немедленным началом ее обслуживания. Переход изS 1 вS 0 осуществляется, как только очередное обслуживание завершится (рис.4).

Рис.4. Граф состояний одноканальной СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств.

Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени):

где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками -);

–интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания )

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):

Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной):

Очевидны следующие соотношения: и.

Пример . Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа. Среднее время изготовления одной детали равно. Если при поступлении заявки на изготовление детали станок занят, то она (деталь) направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

Т.е. в среднем примерно 46 % деталей обрабатываются на этом станке.

.

Т.е. в среднем примерно 54 % деталей направляются на обработку на другие станки.

N – канальная смо с отказами (задача Эрланга)

Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом.

Дано : в системе имеетсяn – каналов, на которые поступает поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времениt , получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение . Состояние системыS (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

    S 0 – в СМО нет ни одной заявки;

    S 1 – в СМО находится одна заявка (один канал занят, остальные свободны);

    S 2 – в СМО находится две заявки (два канала заняты, остальные свободны);

    S n – в СМО находитсяn – заявок (всеn – каналов заняты).

Граф состояний СМО представлен на рис. 5

Рис.5 Граф состояний для n – канальной СМО с отказами

Почему граф состояний размечен именно так? Из состояния S 0 в состояниеS 1 систему переводит поток заявок с интенсивностью(как только приходит заявка, система переходит изS 0 вS 1). Если система находилась в состоянииS 1 и пришла еще одна заявка, то она переходит в состояниеS 2 и т.д.

Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S 1 (работает один канал). Он производитобслуживаний в единицу времени. Поэтому дуга перехода из состоянияS 1 в состояниеS 0 нагружена интенсивностью. Пусть теперь система находится в состоянииS 2 (работают два канала). Чтобы ей перейти вS 1 , нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равнаи т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность :

где n – количество каналов СМО;

–вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S 0);

Рис.6. Граф состояний для схемы «гибели и размножения»

Для того, чтобы написать формулу для определения , рассмотрим рис.6

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):

Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом.

S 1 , когда один канал занят:

Вероятность того, что СМО находится в состоянии S 2 , т.е. когда два канала заняты:

Вероятность того, что СМО находится в состоянии S n , т.е. когда все каналы заняты.

Теперь для n – канальной СМО с отказами

Относительная пропускная способность:

Напомним, что это средняя доля заявок, обслуживаемых системой. При этом

Вероятность отказа :

Напомним, что это вероятность того, что заявка покинет СМО необслуженной. Очевидно, что .

Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно):

Требуется решить задачи 1-3. Исходные данные приведены в табл. 2-4.

Некоторые обозначения, применяемые в теории массового обслуживания, для формул:

n - число каналов в СМО;

λ - интенсивность входящего потока заявок П вх;

v - интенсивность выходящего потока заявок П вых;

μ - интенсивность потока обслуживания П об;

ρ - показатель нагрузки системы (трафик);

m - максимальное число мест в очереди, ограничивающее длину очереди заявок;

i - число источников заявок;

p к - вероятность k-го состояния системы;

p о - вероятность простаивания всей системы, т. е. вероятность того, что все каналы свободны;

p сист - вероятность принятия заявки в систему;

p отк - вероятность отказа заявке в принятии ее в систему;

р об - вероятность того, что заявка будет обслужена;

А - абсолютная пропускная способность системы;

Q - относительная пропускная способность системы;

оч - среднее число заявок в очереди;

об - среднее число заявок под обслуживанием;

сист - среднее число заявок в системе;

оч - среднее время ожидания заявки в очереди;

об - среднее время обслуживания заявки, относящееся только к обслуженным заявкам;

сис - среднее время пребывания заявки в системе;

ож - среднее время, ограничивающее ожидание заявки в очереди;

Среднее число занятых каналов.

Абсолютная пропускная способность СМО А - среднее число заявок, которое может обслужить система за единицу времени.

Относительная пропускная способность СМО Q - отношение среднего числа заявок, обслуживаемых системой в единицу времени, к среднему числу поступающих за это время заявок.

При решении задач массового обслуживания необходимо придерживаться нижеприведенной последовательности:

1) определение типа СМО по табл. 4.1;

2) выбор формул в соответствии с типом СМО;

3) решение задачи;

4) формулирование выводов по задаче.

1. Схема гибели и размножения.

Мы знаем, что, имея в распоряжении размеченный граф состояний, можно легко написать уравнения Колмогорова для вероятностей состояний, а также написать и решить алгебраические уравнения для финальных вероятностей. Для некоторых случаев удается последние уравнения решить заранее, в буквенном виде. В частности, это удается сделать, если граф состояний системы представляет собой так называемую «схему гибели и размножения».

Граф состояний для схемы гибели и размножения имеет вид, показанный на рис. 19.1. Особенность этого графа в том, что все состояния системы можно вытянуть в одну цепочку, в которой каждое из средних состояний (S 1 , S 2 , …, S n-1) связано прямой и обратной стрелкой с каждым из соседних состояний — правым и левым, а крайние состояния (S 0 , S n) — только с одним соседним состоянием. Термин «схема гибели и размножения» ведет начало от биологических задач, где подобной схемой описывается изменение численности популяции.


Схема гибели и размножения очень часто встречается в разных задачах практики, в частности — в теории массового обслуживания, поэтому полезно, один раз и навсегда, найти для нее финальные вероятности состояний.

Предположим, что все потоки событии, переводящие систему по стрелкам графа,— простейшие (для краткости будем называть и систему S и протекающий в ней процесс — простейшими).

Пользуясь графом рис. 19.1, составим и решим алгебраические уравнения для финальных вероятностей состоянии), существование вытекает из того, что из каждого состояния можно перейти в каждое другое, в число состояний конечно).

Для первого состояния S 0 имеем:

(19.1)

Для второго состояния S 1:

В силу (19.1) последнее равенство приводится к виду

где k принимает все значения от 0 до п. Итак, финальные вероятности p 0 , p 1 , ..., р n удовлетворяют уравнениям

(19.2)

кроме того, надо учесть нормировочное условие

p 0 + p 1 + p 2 +…+ p n =1. (19.3)

Решим эту систему уравнений. Из первого уравнения (19.2) выразим p 1 через р 0 :

p 1 = p 0. (19.4)

Из второго, с учетом (19.4), получим:

(19.5)

из третьего, с учетом (19.5),

(19.6)

и вообще, для любого k (от 1 до n ):

(19.7)

Обратим внимание на формулу (19.7). В числителе стоит произведение всех интенсивностей, стоящих у стрелок, ведущих слева направо (с начала и до данного состояния S k), а в знаменателе — произведение всех интенсивностей, стоящих у стрелок, ведущих справа налево (с начала и до S k).

Таким образом, все вероятности состояний р 0 , p 1 , ..., р n выражены через одну из них (р 0). Подставим эти выражения в нормировочное условие (19.3). Получим, вынося за скобку р 0:

отсюда получим выражение для р 0 :

(скобку мы возвели в степень -1, чтобы не писать двухэтажных дробей). Все остальные вероятности выражены через р 0 (см. формулы (19.4) — (19.7)). Заметим, что коэффициенты при р 0 в каждой из них представляют собой не что иное, как последовательные члены ряда, стоящего после единицы в формуле (19.8). Значит, вычисляя р 0 , мы уже нашли все эти коэффициенты.

Полученные формулы очень полезны при решении простейших задач теории массового обслуживания.

2. Формула Литтла .

Теперь мы выведем одну важную формулу, связывающую (для предельного, стационарного режима) среднее число заявок L сист, находящихся в системе массового обслуживания (т. е. обслуживаемых или стоящих в очереди), и среднее время пребывания заявки в системе W сист.

Рассмотрим любую СМО (одноканальную, многоканальную, марковскую, немарковскую, с неограниченной или с ограниченной очередью) и связанные с нею два потока событий: поток заявок, прибывающих в СМО, и поток заявок, покидающих СМО. Если в системе установился предельный, стационарный режим, то среднее число заявок, прибывающих в СМО за единицу времени, равно среднему числу заявок, покидающих ее: оба потока имеют одну и ту же интенсивность λ.

Обозначим: X(t} — число заявок, прибывших в СМО до момента t. Y (t ) число заявок покинувших СМО

до момента t. И та, и другая функции являются случайными и меняются скачком (увеличиваются на единицу) в моменты приходов заявок (X (t )) и уходов заявок (Y(t)). Вид функций X(t) и Y(t) показан на рис. 19.2; обе линии — ступенчатые, верхняя — X(t), нижняя—Y(t). Очевидно, что для любого момента t их разность Z (t ) = X(t) — Y(t) есть не что иное, как число заявок, находящихся в СМО. Когда линии X(t) и Y(t) сливаются, в системе нет заявок.

Рассмотрим очень большой промежуток времени Т (мысленно продолжив график далеко за пределы чертежа) и вычислим для него среднее число заявок, находящихся в СМО. Оно будет равно интегралу от функции Z(t) на этом промежутке, деленному на длину интервала Т:

L сист. = . (19.9) о

Но этот интеграл представляет собой не что иное, как площадь фигуры, заштрихованной на рис. 19.2. Разглядим хорошенько этот рисунок. Фигура состоит из прямоугольников, каждый из которых имеет высоту, равную единице, и основание, равное времени пребывания в системе соответствующей заявки (первой, второй и т. д.). Обозначим эти времена t 1 , t 2 ,... Правда, под конец промежутка Т некоторые прямоугольники войдут в заштрихованную фигуру не полностью, а частично, но при достаточно большом Т эти мелочи не будут играть роли.

(19.10)

где сумма распространяется на все заявки, пришедшие за время Т.

Разделим правую и левую часть (.19.10) на длину интервала Т. Получим, с учетом (19.9),

L сист. = . (19.11)

Разделим и умножим правую часть (19.11) на интенсивность X:

L сист. = .

Но величина Тλ есть не что иное, как среднее число заявок, пришедших за время ^ Т. Если мы разделим сумму всех времен t i на среднее число заявок, то получим среднее время пребывания заявки в системе W сист. Итак,

L сист. = λW сист. ,

W сист. = . (19.12)

Это и есть замечательная формула Литтла: для любой СМО, при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания среднее время пребывания заявки в системе равно среднему числу заявок в системе, деленному на интенсивность потока заявок.

Точно таким же образом выводится вторая формула Литтла, связывающая среднее время пребывания заявки в очереди ^ W оч и среднее число заявок в очереди L оч:

W оч = . (19.13)

Для вывода достаточно вместо нижней линии на рис. 19.2 взять функцию U(t) — количество заявок, ушедших до момента t не из системы, а из очереди (если заявка, пришедшая в систему, не становится в очередь, а сразу идет под обслуживание, можно все же считать, что она становится в очередь, но находится в ней нулевое время).

Формулы Литтла (19.12) и (19.13) играют большую роль в теории массового обслуживания. К сожалению, в большинстве существующих руководств эти формулы (доказанные в общем виде сравнительно недавно) не приводятся 1).


Простейшие системы массового обслуживания и их характеристики

В этом параграфе мы рассмотрим, некоторые простейшие СМО и выведем выражения для их характеристик (показателей эффективности). При этом мы продемонстрируем основные методические приемы, характерные для элементарной, «марковской» теории массового обслуживания.

Мы не будем гнаться за количеством образцов СМО, для которых будут выведены конечные выражения характеристик; данная книга — не справочник по теории массового обслуживания (такую роль гораздо лучше выполняют специальные руководства). Наша цель — познакомить читателя с некоторыми «маленькими хитростями», облегчающими путь сквозь теорию массового обслуживания, которая в ряде имеющихся (даже претендующих на популярность) книг может показаться бессвязным набором примеров.

Все потоки событий, переводящие СМО из состояния в состояние, в данном параграфе мы будем считать простейшими (не оговаривая это каждый раз специально). В их числе будет и так называемый «поток обслуживании». Под ним разумеется поток заявок, обслуживаемых одним непрерывно занятым каналом. В этом потоке интервал между событиями, как и всегда в простейшем потоке, имеет показательное распределение (во многих руководствах вместо этого говорят: «время обслуживания — показательное», мы и сами в дальнейшем будем пользоваться таким термином).

В популярной книжке дан несколько иной, по сравнению с вышеизложенным, вывод формулы Литтла. Вообще, знакомство с этой книжкой («Беседа вторая») полезно для первоначального ознакомления с теорией массового обслуживания.

В данном параграфе показательное распределение времени обслуживания будет само собой разуметься, как всегда для «простейшей» системы.

Характеристики эффективности рассматриваемых СМО мы будем вводить по ходу изложения.

1. п - канальная СМО с отказами (задача Эрланга). Здесь мы рассмотрим одну из первых по времени, «классических» задач теории массового обслуживания; эта задача возникла из практических нужд телефонии и была решена в начале нашего века датским математиком Эрлантом. Задача ставится так: имеется п каналов (линий связи), на которые поступает поток заявок с интенсивностью λ. Поток обслуживании имеет интенсивность μ (величина, обратная среднему времени обслуживания t об).

Найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

^ А — абсолютную пропускную способность, т. е. среднее число заявок, обслуживаемых в единицу времени;

Q — относительную пропускную способность, т. е. среднюю долю пришедших заявок, обслуживаемых системой;

^ Р отк — вероятность отказа, т. е. того, что заявка покинет СМО не обслуженной;

k — среднее число занятых каналов.

Решение. Состояния системы ^ S (СМО) будем нумеровать по числу заявок, находящихся в системе (в данном случае оно совпадает с числом занятых каналов):

S 0 — в СМО нет ни одной заявки,

S 1 — в СМО находится одна заявка (один канал занят, остальные свободны),

S k — в СМО находится k заявок (k каналов заняты, остальные свободны),

S n — в СМО находится п заявок (все n каналов заняты).

Граф состояний СМО соответствует схеме гибели в размножения (рис. 20.1). Разметим этот граф — проставим у стрелок интенсивности потоков событий. Из S 0 в S 1 систему переводит поток заявок с интенсивностью λ (как только приходит заявка, система перескакивает из S 0 в S 1). Тот же поток заявок переводит систему из любого левого состояния в соседнее правое (см. верхние стрелки на рис. 20.1).

Проставим интенсивности у нижних стрелок. Пусть система находится в состоянии ^ S 1 (работает один канал). Он производит μ обслуживании в единицу времени. Проставляем у стрелки S 1 → S 0 интенсивность μ. Теперь представим себе, что система находится в состоянии S 2 (работают два канала). Чтобы ей перейти в S 1 , нужно, чтобы либо закончил обслуживание первый канал, либо второй; суммарная интенсивность их потоков обслуживании равна 2μ; проставляем ее у соответствующей стрелки. Суммарный поток обслуживании, даваемый тремя каналами, имеет интенсивность 3μ, k каналами — kμ. Проставляем эти интенсивности у нижних стрелок на рис. 20.1.

А теперь, зная все интенсивности, воспользуемся уже готовыми формулами (19.7), (19.8) для финальных вероятностей в схеме гибели и размножения.

По формуле (19.8) получим:

Члены разложения будут представлять собой коэффициенты при р 0 в выражениях для p 1


Заметим, что в формулы (20.1), (20.2) интенсивности λ и μ входят не по отдельности, а только в виде отношения λ/μ. Обозначим

λ/μ = ρ (20.3)

И будем называть величину р «приведенной интенсивностью потока заявок». Ее смысл —среднее число заявок, приходящее за среднее время обслуживания одной заявки. Пользуясь этим обозначением, перепишем формулы (20.1), (20.2) в виде:

Формулы (20.4), (20.5) для финальных вероятностей состояний называются формулами Эрланга — в честь основателя теории массового обслуживания. Большинство других формул этой теории (сегодня их больше, чем грибов в лесу) не носит никаких специальных имен.

Таким образом, финальные вероятности найдены. По ним мы вычислим характеристики эффективности СМО. Сначала найдем ^ Р отк . — вероятность того, что пришедшая заявка получит отказ (не будет обслужена). Для этого нужно, чтобы все п каналов были заняты, значит,

Р отк = р n = . (20.6)

Отсюда находим относительную пропускную способность — вероятность того, что заявка будет обслужена:

Q = 1 - P отк. = 1 - (20.7)

Абсолютную пропускную способность получим, умножая интенсивность потока заявок λ, на Q:

A = λQ = λ. (20.8)

Осталось только найти среднее число занятых каналов k. Эту величину можно было бы найти «впрямую», как математическое ожидание дискретной случайной величины с возможными значениями 0, 1, ..., п и вероятностями этих значений р 0 р 1 , ..., р n:

k = 0 · р 0 + 1 · p 1 + 2 · р 2 + ... + п · р n .

Подставляя сюда выражения (20.5) для р k , (k = 0, 1, ..., п) и выполняя соответствующие преобразования, мы, в конце концов, получили бы верную формулу для k. Но мы выведем ее гораздо проще (вот она, одна из «маленьких хитростей»!) В самом деле, нам известна абсолютная пропускная способность А. Это — не что иное, как интенсивность потока обслуженных системой заявок. Каждый занятый i .шал в единицу времени обслуживает в среднем |л заявок. Значит, среднее число занятых каналов равно

k = A/μ, (20.9)

или, учитывая (20.8),

k = (20.10)

Рекомендуем читателю самостоятельно решить пример. Имеется станция связи с тремя каналами (n = 3), интенсивность потока заявок λ = 1,5 (заявки в минуту); среднее время обслуживания одной заявки t об = 2 (мин.), все потоки событий (как и во всем этом параграфе) — простейшие. Найти финальные вероятности состояний и характеристики эффективности СМО: А, Q, P отк, k. На всякий случай сообщаем ответы: p 0 = 1/13, p 1 = 3/13, p 2 = 9/26, р 3 = 9/26 ≈ 0,346,

А ≈ 0,981, Q ≈ 0,654, P отк ≈ 0,346, k ≈ 1,96.

Из ответов видно, между прочим, что наша СМО в значительной мере перегружена: из трех каналов занято в среднем около двух, а из поступающих заявок около 35% остаются не обслуженными. Предлагаем читателю, если он любопытен и неленив, выяснить: сколько потребуется каналов для того, чтобы удовлетворить не менее 80% поступающих заявок? И какая доля каналов при этом будет простаивать?

Тут уже проглядывает некоторый намек на оптимизацию. В самом деле, содержание каждого канала в единицу времени обходится в какую-то сумму. Вместе с тем, каждая обслуженная заявка приносит какой-то доход. Умножая этот доход на среднее число заявок А, обслуживаемых в единицу времени, мы получим средний доход от СМО в единицу времени. Естественно, при увеличении числа каналов этот доход растет, но растут и расходы, связанные с содержанием каналов.

Что перевесит — увеличение доходов или расходов? Это зависит от условий операции, от «платы за обслуживание заявки» и от стоимости содержания канала. Зная эти величины, можно найти оптимальное число каналов, наиболее эффективное экономически. Мы такой задачи решать не будем, предоставляя все тому же «неленивому и любопытному читателю» придумать пример и решить. Вообще, придумывание задач больше развивает, чем решение уже поставленных кем-то.

Одноканальная СМО с неограниченной очередью.

На практике довольно часто встречаются одноканальные СМО с очередью (врач, обслуживающий пациентов; телефон-автомат с одной будкой; ЭВМ, выполняющая заказы пользователей). В теории массового обслуживания одноканальные СМО с очередью также занимают особое место (именно к таким СМО относится большинство полученных до сих пор аналитических формул для немарковских систем). Поэтому мы уделим одноканальной СМО с очередью особое внимание.

Пусть имеется одноканальная СМО с очередью, на которую не наложено никаких ограничений (ни по длине очереди, ни по времени ожидания). На эту СМО поступает поток заявок с интенсивностью λ; поток обслуживании имеет интенсивность μ, обратную среднему времени обслуживания заявки t об.

Требуется найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

L сист. среднее число заявок в системе,

W сист. — среднее время пребывания заявки в системе,

^ L оч — среднее число заявок в очереди,

W оч среднее время пребывания заявки в очереди,

P зан вероятность того, что канал занят (степень загрузки канала).

Что касается абсолютной пропускной способности А и относительной Q, то вычислять их нет надобности:

в силу того, что очередь неограниченна, каждая заявка рано или поздно будет обслужена, поэтому А = λ, по той же причине Q = 1.

Решение. Состояния системы, как и раньше, будем нумеровать по числу заявок, находящихся в СМО:

S 0 канал свободен,

S 1 — канал занят (обслуживает заявку), очереди нет,

S 2 — канал занят, одна заявка стоит в очереди,

S k — канал занят, k — 1 заявок стоят в очереди,

Теоретически число состояний ничем не ограничено (бесконечно). Граф состоянии имеет вид, показанный на рис. 20.2. Это — схема гибели и размножения, но с бесконечным числом состояний. По всем стрелкам поток заявок с интенсивностью λ переводит систему слева направо, а справа налево — поток обслуживании с интенсивностью μ.

Прежде всего спросим себя, а существуют ли в этом случае финальные вероятности? Ведь число состояний системы бесконечно, и, в принципе, при t → ∞ очередь может неограниченно возрастать! Да, так оно и есть: финальные вероятности для такой СМО существуют не всегда, а только когда система не перегружена. Можно доказать, что если ρ строго меньше единицы (ρ< 1), то финальные вероятности существуют, а при ρ ≥ 1 очередь при t → ∞ растет неограниченно.

Особенно «непонятным» кажется этот факт при ρ = 1. Казалось бы, к системе не предъявляется невыполнимых требований: за время обслуживания одной заявки приходит в среднем одна заявка, и все должно быть в порядке, а вот на деле — не так. При ρ = 1 СМО справляется с потоком заявок, только если поток этот — регулярен, и время обслуживания — тоже не случайное, равное интервалу между заявками. В этом «идеальном» случае очереди в СМО вообще не будет, канал будет непрерывно занят и будет регулярно выпускать обслуженные заявки.

Но стоит только потоку заявок или потоку обслуживании стать хотя бы чуточку случайными — и очередь уже будет расти до бесконечности. На практике этого не происходит только потому, что «бесконечное число заявок в очереди» — абстракция. Вот к каким грубым ошибкам может привести замена случайных величин их математическими ожиданиями!

Но вернемся к нашей одноканальной СМО с неограниченной очередью. Строго говоря, формулы для финальных вероятностей в схеме гибели и размножения выводились нами только для случая конечного числа состояний, но позволим себе вольность — воспользуемся ими и для бесконечного числа состояний. Подсчитаем финальные вероятности состояний по формулам (19.8), (19.7). В нашем случае число слагаемых в формуле (19.8) будет бесконечным. Получим выражение для р 0:

p 0 = -1 = (1 + р + р 2 + ... + р k +… .) -1 . (20.11)

Ряд в формуле (20.11) представляет собой геометрическую прогрессию. Мы знаем, что при ρ < 1 ряд сходится — это бесконечно убывающая геометрическая прогрессия со знаменателем р. При р ≥ 1 ряд расходится (что является косвенным, хотя и не строгим доказательством того, что финальные вероятности состояний р 0 , p 1 , ..., p k , ... существуют только при р<1).

Теперь предположим, что это условие выполнено, и ρ1 + ρ + ρ 2 + ... + ρ k + ... = ,

p 0 = 1 - ρ. (20.12)

Вероятности р 1 , р 2 , ..., р k , ... найдутся по формулам:

p 1 = ρp 0 , p 2 = ρ 2 p 0 ,…,p k = ρp 0 , ...,

Откуда, с учетом (20.12), найдем окончательно:

p 1 = ρ (1 - ρ), p 2 = ρ 2 (1 - ρ), . . . , p k = ρ k (1 - ρ), . . .(20.13)

Как видно, вероятности p 0 , p 1 , ..., p k , ... образуют геометрическую прогрессию со знаменателем р. Как это ни странно, максимальная из них р 0 — вероятность того, что канал будет вообще свободен. Как бы ни была нагружена система с очередью, если только она вообще справляется с потоком заявок (ρ<1), самое вероятное число заявок в системе будет 0.

Найдем среднее число заявок в СМО ^ L сист . . Тут придется немного повозиться. Случайная величина Z — число заявок в системе — имеет возможные значения 0, 1, 2, .... k, ... с вероятностями p 0 , р 1 , р 2 , ..., p k , ... Ее математическое ожидание равно

L сист = 0 ? p 0 + 1 ? p 1 + 2 ? p 2 +…+k ? p k +…= (20.14)

(сумма берется не от 0 до ∞, а от 1 до ∞, так как нулевой член равен нулю).

Подставим в формулу (20.14) выражение для p k (20.13):

L сист. =

Теперь вынесем за знак суммы ρ (1-ρ):

L сист. = ρ (1-ρ)

Тут мы опять применим «маленькую хитрость»: k ρ k -1 есть не что иное, как производная по ρ от выражения ρ k ; значит,

L сист. = ρ (1-ρ)

Меняя местами операции дифференцирования п суммирования, получим:

L сист. = ρ (1-ρ) (20.15)

Но сумма в формуле (20.15) есть не что иное, как сумма бесконечно убывающей геометрической прогрессии с первым членом ρ и знаменателем ρ; эта сумма

равна , а ее производная . Подставляя это выражение в (20.15), получим:

L сист = . (20.16)

Ну, а теперь применим формулу Литтла (19.12) и найдем среднее время пребывания заявки в системе:

W сист = (20.17)

Найдем среднее число заявок в очереди L оч. Будем рассуждать так: число заявок в очереди равно числу заявок в системе минус число заявок, находящихся под обслуживанием. Значит (по правилу сложения математических ожиданий), среднее число заявок в очереди L оч равно среднему числу заявок в системе L сист минус среднее число заявок под обслуживанием.

Число заявок под обслуживанием может быть либо нулем (если канал свободен), либо единицей (если он занят). Математическое ожидание такой случайной величины равно вероятности того, что канал занят (мы ее обозначили Р зан). Очевидно, Р зан равно единице минус вероятность р 0 того, что канал свободен:

Р зан = 1 - р 0 = ρ. (20.18)

Следовательно, среднее число заявок под обслуживанием равно

^ L об = ρ, (20.19)

L оч = L сист - ρ =

и окончательно

L оч = (20.20)

По формуле Литтла (19.13) найдем среднее время пребывания заявки в очереди:

(20.21)

Таким образом, все характеристики эффективности СМО найдены.

Предложим читателю самостоятельно решить пример: одноканальная СМО представляет собой железнодорожную сортировочную станцию, на которую поступает простейший поток составов с интенсивностью λ = 2 (состава в час). Обслуживание (расформирование)

состава длится случайное (показательное) время со средним значением t об = 20 (мин.). В парке прибытия станции имеются два пути, на которых могут ожидать обслуживания прибывающие составы; если оба пути заняты, составы вынуждены ждать на внешних путях.

Требуется найти (для предельного, стационарного режима работы станции): среднее, число составов l сист, связанных со станцией, среднее время W сист пребывания состава при станции (на внутренних путях, на внешних путях и под обслуживанием), среднее число L оч составов, ожидающих очереди на расформирование (все равно, на каких путях), среднее время W оч пребывания состава на очереди. Кроме того, попытайтесь найти среднее число составов, ожидающих расформирования на внешних путях L внеш и среднее время этого ожидания W внеш (две последние величины связаны формулой Литтла).

Наконец, найдите суммарный суточный штраф Ш, который придется заплатить станции за простои составов на внешних путях, если за один час простоя одного состава станция платит штраф а (руб.). На всякий случай сообщаем ответы: L сист. = 2 (состава), W сист. = 1 (час), L оч = 4/3 (состава), W оч = 2/3 (часа), L внеш = 16/27 (состава), W внеш = 8/27 ≈ 0,297 (часа). Средний суточный штраф Ш за ожидание составов на внешних путях получим, перемножая среднее число составов, прибывающих на станцию за сутки, среднее время ожидания состава на внешних путях и часовой штраф а : Ш ≈ 14,2а .

re-канальная СМО с неограниченной очередью.

Совершенно аналогично задаче 2, но чуточку более сложно, решается задача об n -канальной СМО с неограниченной очередью.

μ 2μ kμ (k+1)μ nμ nμ nμ nμ nμ

Есть схема гибели и размножения, но с бесконечным числом состояний. Сообщим без доказательства естественное условие существования финальных вероятностей: ρ/n n ≥ 1, очередь растет до бесконечности.

Предположим, что условие ρ/n < 1 выполнено, и финальные вероятности существуют. Применяя все те же формулы (19.8), (19.7) для схемы гибели и размножения, найдем эти финальные вероятности. В выражении для р 0 будет стоять ряд членов, содержащих факториалы, плюс сумма бесконечно убывающей геометрической прогрессии со знаменателем ρ/n . Суммируя ее, найдем

(20.22)

Теперь найдем характеристики эффективности СМО. Из них легче всего находится среднее число занятых каналов k = λ/μ, = ρ (это вообще справедливо для любой СМО с неограниченной очередью). Найдем среднее число заявок в системе L сист и среднее число заявок в очереди L оч. Из них легче вычислить второе, по формуле

L оч =

выполняя соответствующие преобразования по образцу задачи 2

(с дифференцированием ряда), получим:

L оч = (20.23)

Прибавляя к нему среднее число заявок под обслуживанием (оно же — среднее число занятых каналов) k = ρ, получим:

L сист = L оч + ρ. (20.24)

Деля выражения для L оч и L сист на λ, по формуле Литтла получим средние времена пребывания заявки в очереди и в системе:

(20.25)

А теперь решим любопытный пример. Железнодорожная касса по продаже билетов с двумя окошками представляет собой двухканальную СМО с неограниченной очередью, устанавливающейся сразу к двум окошкам (если одно окошко освобождается, ближайший в очереди пассажир его занимает). Касса продает билеты в два пункта: А и В. Интенсивность потока заявок (пассажиров, желающих купить билет) для обоих пунктов А и В одинакова: λ А = λ В = 0,45 (пассажира в минуту), а в сумме они образуют общий поток заявок с интенсивностью λ А + λ В = 0,9. Кассир тратит на обслуживание пассажира в среднем две минуты.

Опыт показывает, что у кассы скапливаются очереди, пассажиры жалуются на медленность обслуживания, Поступило рационализаторское предложение: вместо одной кассы, продающей билеты и в А и в В, создать две специализированные кассы (по одному окошку в каждой), продающие билеты одна — только в пункт А , другая — только в пункт В. Разумность этого предложения вызывает споры — кое-кто утверждает, что очереди останутся прежними. Требуется проверить полезность предложения расчетом. Так как мы умеем считать характеристики только для простейших СМО, допустим, что все потоки событий — простейшие (на качественной стороне выводов это не скажется).

Ну, что же, возьмемся за дело. Рассмотрим два варианта организации продажи билетов — существующий и предлагаемый.

Вариант I (существующий). На двухканальную СМО поступает поток заявок с интенсивностью λ = 0,9; интенсивность потока обслуживании μ = 1/2 = 0,5; ρ = λ/μ = l,8. Так как ρ/2 = 0,9<1, финальные вероятности существуют. По первой формуле (20.22) находим р 0 ≈ 0,0525. Среднее, число заявок в очереди находим по формуле (20.23): L оч ≈ 7,68; среднее время, проводимое заявкой в очереди (по первой из формул (20.25)), равно W оч ≈ 8,54 (мин.).

Вариант II (предлагаемый). Надо рассмотреть две одноканальные СМО (два специализированных окошка); на каждую поступает поток заявок с интенсивностью λ = 0,45; μ. по-прежнему равно 0,5; ρ = λ/μ = 0,9<1; финальные вероятности существуют. По формуле (20.20) находим среднюю длину очереди (к одному окошку) L оч = 8,1.

Вот тебе и раз! Длина очереди, оказывается, не только не уменьшилась, а увеличилась! Может быть, уменьшилось среднее время ожидания в очереди? Посмотрим. Деля L оч на λ = 0,45, получим W оч ≈ 18 (минут).

Вот так рационализация! Вместо того чтобы уменьшиться, и средняя длина очереди, и среднее время ожидания в ней увеличились!

Давайте попробуем догадаться, почему так произошло? Пораскинув мозгами, приходим к выводу: произошло это потому, что в первом варианте (двухканальная СМО) меньше средняя доля времени, которую простаивает каждый из двух кассиров: если он не занят обслуживанием пассажира, покупающего билет в пункт А, он может заняться обслуживанием пассажира, покупающего билет в пункт В, и наоборот. Во втором варианте такой взаимозаменяемости нет: незанятый кассир просто сидит, сложа руки...

— Ну, ладно,— готов согласиться читатель,— увеличение можно объяснить, но почему оно такое существенное? Нет ли тут ошибки в расчете?

И на этот вопрос мы ответим. Ошибки нет. Дело в том, что в нашем примере обе СМО работают на пределе своих возможностей; стоит немного увеличить время обслуживания (т. е. уменьшить μ), как они уже перестанут справляться с потоком пассажиров, и очередь начнет неограниченно возрастать. А «лишние простои» кассира в каком-то смысле равносильны уменьшению его производительности μ.

Таким образом, кажущийся сначала парадоксальным (или даже просто неверным) результат вычислений оказывается на поверку правильным и объяснимым.

Такого рода парадоксальными выводами, причина которых отнюдь не очевидна, богата теория массового обслуживания. Автору самому неоднократно приходилось «удивляться» результатам расчетов, которые потом оказывались правильными.

Размышляя над последней задачей, читатель может поставить вопрос так: ведь если касса продает билеты только в один пункт, то, естественно, время обслуживания должно уменьшиться, ну, не вдвое, а хоть сколько-нибудь, а мы считали, что оно по-прежнему в среднем равно 2 (мин.). Предлагаем такому придирчивому читателю ответить на вопрос: а насколько надо его уменьшить, чтобы «рационализаторское предложение» стало выгодным?

Снова мы встречаемся хотя и с элементарной, но все же задачей оптимизации. С помощью ориентировочных расчетов даже на самых простых, марковских моделях удается прояснить качественную сторону явления — как выгодно поступать, а как — невыгодно. В следующем параграфе мы познакомимся с некоторыми элементарными немарковскими моделями, которые еще расширят наши возможности.

После того, как читатель ознакомился с приемами вычисления финальных вероятностей состояний и характеристик эффективности для простейших СМО (овладел схемой гибели и размножения и формулой Литтла), ему можно предложить для самостоятельного рассмотрения еще две простейшие СМО.

Одноканальная СМО с ограниченной очередью. Задача отличается от задачи 2 только тем, что число заявок в очереди ограничено (не может превосходить некоторого заданного т). Если новая заявка приходит в момент, когда все места в очереди заняты, она покидает СМО не обслуженной (получает отказ).

Надо найти финальные вероятности состояний (кстати, они в этой задаче существуют при любом ρ — ведь число состояний конечно), вероятность отказа Р отк, абсолютную пропускную способность А, вероятность того, что канал занят Р зан, среднюю длину очереди L оч, среднее число заявок в СМО L сист , среднее время ожидания в очереди W оч , среднее время пребывания заявки в СМО W сист. При вычислении характеристик очереди можно пользоваться тем же приемом, какой мы применяли в задаче 2, с той разницей, что суммировать надо не бесконечную прогрессию, а конечную.

Замкнутая СМО с одним каналом и m источниками заявок. Для конкретности поставим задачу в следующей форме: один рабочий обслуживает т станков, каждый из которых время от времени требует наладки (исправления). Интенсивность потока требований каждого работающего станка равна λ. Если станок вышел из строя в момент, когда рабочий свободен, он сразу же поступает на обслуживание.

Если он вышел из строя в момент, когда рабочий занят, он становится в очередь и ждет, пока рабочий освободится. Среднее время наладки станка t об = 1/μ. Интенсивность потока заявок, поступающих к рабочему, зависит от того, сколько станков работает. Если работает k станков, она равна k λ. Найти финальные вероятности состояний, среднее число работающих станков и вероятность того, что рабочий будет занят.

Заметим, что и в этой СМО финальные вероятности будут существовать при любых значениях λ и μ = 1/t об, так как число состояний системы конечно.