Дифференциальные уравнения первого порядка с разделяющимися переменными. Дифференциальные уравнения с разделяющимися переменными

Обыкновенные дифференциальные уравнения.

Решение различных геометрических, физических и инженерных задач часто приводят к уравнениям, которые связывают независимые переменные, характеризующие ту ил иную задачу, с какой – либо функцией этих переменных и производными этой функции различных порядков.

В качестве примера можно рассмотреть простейший случай равноускоренного движения материальной точки.

Известно, что перемещение материальной точки при равноускоренном движении является функцией времени и выражается по формуле:

В свою очередь ускорение a является производной по времени t от скорости V , которая также является производной по времени t от перемещения S . Т.е.

Тогда получаем:
- уравнение связывает функцию f(t) с независимой переменной t и производной второго порядка функции f(t).

Определение. Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функции и производные (или дифференциалы) этой функции.

Определение. Если дифференциальное уравнение имеет одну независимую переменную, то оно называется обыкновенным дифференциальным уравнением , если же независимых переменных две или более, то такое дифференциальное уравнение называется дифференциальным уравнением в частных производных.

Определение. Наивысший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения.

Пример.

- обыкновенное дифференциальное уравнение 1 – го порядка. В общем виде записывается
.

- обыкновенное дифференциальное уравнение 2 – го порядка. В общем виде записывается

- дифференциальное уравнение в частных производных первого порядка.

Определение. Общим решением дифференциального уравнения называется такая дифференцируемая функция y = (x, C), которая при подстановке в исходное уравнение вместо неизвестной функции обращает уравнение в тождество.

Свойства общего решения.

1) Т.к. постоянная С – произвольная величина, то вообще говоря дифференциальное уравнение имеет бесконечное множество решений.

2) При каких- либо начальных условиях х = х 0 , у(х 0) = у 0 существует такое значение С = С 0 , при котором решением дифференциального уравнения является функция у = (х, С 0).

Определение. Решение вида у = (х, С 0) называется частным решением дифференциального уравнения.

Определение. Задачей Коши (Огюстен Луи Коши (1789-1857)- французский математик) называется нахождение любого частного решения дифференциального уравнения вида у = (х, С 0), удовлетворяющего начальным условиям у(х 0) = у 0 .

Теорема Коши. (теорема о существовании и единственности решения дифференциального уравнения 1- го порядка)

Если функция f (x , y ) непрерывна в некоторой области D в плоскости XOY и имеет в этой области непрерывную частную производную
, то какова бы не была точка (х
0 , у 0 ) в области D , существует единственное решение
уравнения
, определенное в некотором интервале, содержащем точку х
0 , принимающее при х = х 0 значение 0 ) = у 0 , т.е. существует единственное решение дифференциального уравнения.

Определение. Интегралом дифференциального уравнения называется любое уравнение, не содержащее производных, для которого данное дифференциальное уравнение является следствием.

Пример. Найти общее решение дифференциального уравнения
.

Общее решение дифференциального уравнения ищется с помощью интегрирования левой и правой частей уравнения, которое предварительно преобразовано следующим образом:

Теперь интегрируем:

- это общее решение исходного дифференциального уравнения.

Допустим, заданы некоторые начальные условия: x 0 = 1; y 0 = 2, тогда имеем

При подстановке полученного значения постоянной в общее решение получаем частное решение при заданных начальных условиях (решение задачи Коши).

Определение. Интегральной кривой называется график y = (x) решения дифференциального уравнения на плоскости ХОY.

Определение. Особым решением дифференциального уравнения называется такое решение, во всех точках которого условие единственности Коши (см. Теорема Коши. ) не выполняется, т.е. в окрестности некоторой точки (х, у) существует не менее двух интегральных кривых.

Особые решения не зависят от постоянной С.

Особые решения нельзя получить из общего решения ни при каких значениях постоянной С. Если построить семейство интегральных кривых дифференциального уравнения, то особое решение будет изображаться линией, которая в каждой своей точке касается по крайней мере одной интегральной кривой.

Отметим, что не каждое дифференциальное уравнение имеет особые решения.

Пример.
Найти особое решение, если оно существует.

Данное дифференциальное уравнение имеет также особое решение у = 0. Это решение невозможно получить из общего, однако при подстановке в исходное уравнение получаем тождество. Мнение, что решение y = 0 можно получить из общего решения при С 1 = 0 ошибочно, ведь C 1 = e C 0.

Дифференциальные уравнения первого порядка.

Определение. Дифференциальным уравнением первого порядка называется соотношение, связывающее функцию, ее первую производную и независимую переменную, т.е. соотношение вида:

Если такое соотношение преобразовать к виду
то это дифференциальное уравнение первого порядка будет называться уравнением,разрешенным относительно производной.

Функцию f(x,y) представим в виде:
тогда при подстановке в полученное выше уравнение имеем:

    это так называемая дифференциальная форма уравнения первого порядка.

Уравнения вида y ’ = f ( x ).

Пусть функция f(x) – определена и непрерывна на некотором интервале

a < x < b. В таком случае все решения данного дифференциального уравнения находятся как
. Если заданы начальные условия х 0 и у 0 , то можно определить постоянную С.

Уравнения с разделяющимися переменными

Определение. Дифференциальное уравнение
называетсяуравнением с разделяющимися переменными , если его можно записать в виде

.

Такое уравнение можно представить также в виде:

Перейдем к новым обозначениям

Получаем:

После нахождения соответствующих интегралов получается общее решение дифференциального уравнения с разделяющимися переменными.

Если заданы начальные условия, то при их подстановке в общее решение находится постоянная величина С, а, соответственно, и частное решение.

Пример. Найти общее решение дифференциального уравнения:

Интеграл, стоящий в левой части, берется по частям (см. Интегрирование по частям. ):

    это есть общий интеграл исходного дифференциального уравнения, т.к. искомая функция и не выражена через независимую переменную. В этом и заключается отличие общего (частного) интеграла от общего (частного) решения.

Чтобы проверить правильность полученного ответа продифференцируем его по переменной х.

- верно

Пример. Найти решение дифференциального уравнения
при условии у(2) = 1.

при у(2) = 1 получаем

Итого:
или
- частное решение;

Проверка:
, итого

- верно.

Пример. Решить уравнение

- общий интеграл

- общее решение

Пример. Решить уравнение

Пример. Решить уравнение
при условии у(1) = 0.

Интеграл, стоящий в левой части будем брать по частям (см. Интегрирование по частям. ).

Если у(1) = 0, то

Итого, частный интеграл:
.

Пример. Решить уравнение .

Для нахождения интеграла, стоящего в левой части уравнения см. Таблица основных интегралов. п.16. Получаем общий интеграл:

Пример. Решить уравнение

Преобразуем заданное уравнение:

Получили общий интеграл данного дифференциального уравнения. Если из этого соотношения выразить искомую функцию у, то получим общее решение.

Пример. Решить уравнение
.

;
;

Допустим, заданы некоторые начальные условия х 0 и у 0 . Тогда:

Получаем частное решение

Однородные уравнения.

Определение. Функция f(x, y) называется однородной n – го измерения относительно своих аргументов х и у, если для любого значения параметра t (кроме нуля) выполняется тождество:

Пример. Является ли однородной функция

Таким образом, функция f(x, y) является однородной 3- го порядка.

Определение. Дифференциальное уравнение вида
называетсяоднородным , если его правая часть f(x, y) есть однородная функция нулевого измерения относительно своих аргументов.

Любое уравнение вида является однородным, если функцииP (x , y ) и Q (x , y ) – однородные функции одинакового измерения.

Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.

Рассмотрим однородное уравнение

Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать:

Т.к. параметр t вообще говоря произвольный, предположим, что . Получаем:

Правая часть полученного равенства зависит фактически только от одного аргумента
, т.е.

Исходное дифференциальное уравнение таким образом можно записать в виде:

таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.

Пример. Решить уравнение
.

Введем вспомогательную функцию u .

.

Отметим, что введенная нами функция u всегда положительна, т.к. в противном случае теряет смысл исходное дифференциальное уравнение, содержащее
.

Подставляем в исходное уравнение:

Разделяем переменные:

Интегрируя, получаем:

Переходя от вспомогательной функции обратно к функции у, получаем общее решение:

Уравнения, приводящиеся к однородным.

Кроме уравнений, описанных выше, существует класс уравнений, которые с помощью определенных подстановок могут приведены к однородным.

Это уравнения вида
.

Если определитель
то переменные могут быть разделены подстановкой

где  и  - решения системы уравнений

Пример. Решить уравнение

Получаем

Находим значение определителя
.

Решаем систему уравнений

Применяем подстановку в исходное уравнение:

Заменяем переменную
при подстановке в выражение, записанное выше, имеем:

English: Wikipedia is making the site more secure. You are using an old web browser that will not be able to connect to Wikipedia in the future. Please update your device or contact your IT administrator.

中文: 维基百科正在使网站更加安全。您正在使用旧的浏览器,这在将来无法连接维基百科。请更新您的设备或联络您的IT管理员。以下提供更长,更具技术性的更新(仅英语)。

Español: Wikipedia está haciendo el sitio más seguro. Usted está utilizando un navegador web viejo que no será capaz de conectarse a Wikipedia en el futuro. Actualice su dispositivo o contacte a su administrador informático. Más abajo hay una actualización más larga y más técnica en inglés.

ﺎﻠﻋﺮﺒﻳﺓ: ويكيبيديا تسعى لتأمين الموقع أكثر من ذي قبل. أنت تستخدم متصفح وب قديم لن يتمكن من الاتصال بموقع ويكيبيديا في المستقبل. يرجى تحديث جهازك أو الاتصال بغداري تقنية المعلومات الخاص بك. يوجد تحديث فني أطول ومغرق في التقنية باللغة الإنجليزية تاليا.

Français: Wikipédia va bientôt augmenter la sécurité de son site. Vous utilisez actuellement un navigateur web ancien, qui ne pourra plus se connecter à Wikipédia lorsque ce sera fait. Merci de mettre à jour votre appareil ou de contacter votre administrateur informatique à cette fin. Des informations supplémentaires plus techniques et en anglais sont disponibles ci-dessous.

日本語: ウィキペディアではサイトのセキュリティを高めています。ご利用のブラウザはバージョンが古く、今後、ウィキペディアに接続できなくなる可能性があります。デバイスを更新するか、IT管理者にご相談ください。技術面の詳しい更新情報は以下に英語で提供しています。

Deutsch: Wikipedia erhöht die Sicherheit der Webseite. Du benutzt einen alten Webbrowser, der in Zukunft nicht mehr auf Wikipedia zugreifen können wird. Bitte aktualisiere dein Gerät oder sprich deinen IT-Administrator an. Ausführlichere (und technisch detailliertere) Hinweise findest Du unten in englischer Sprache.

Italiano: Wikipedia sta rendendo il sito più sicuro. Stai usando un browser web che non sarà in grado di connettersi a Wikipedia in futuro. Per favore, aggiorna il tuo dispositivo o contatta il tuo amministratore informatico. Più in basso è disponibile un aggiornamento più dettagliato e tecnico in inglese.

Magyar: Biztonságosabb lesz a Wikipédia. A böngésző, amit használsz, nem lesz képes kapcsolódni a jövőben. Használj modernebb szoftvert vagy jelezd a problémát a rendszergazdádnak. Alább olvashatod a részletesebb magyarázatot (angolul).

Svenska: Wikipedia gör sidan mer säker. Du använder en äldre webbläsare som inte kommer att kunna läsa Wikipedia i framtiden. Uppdatera din enhet eller kontakta din IT-administratör. Det finns en längre och mer teknisk förklaring på engelska längre ned.

हिन्दी: विकिपीडिया साइट को और अधिक सुरक्षित बना रहा है। आप एक पुराने वेब ब्राउज़र का उपयोग कर रहे हैं जो भविष्य में विकिपीडिया से कनेक्ट नहीं हो पाएगा। कृपया अपना डिवाइस अपडेट करें या अपने आईटी व्यवस्थापक से संपर्क करें। नीचे अंग्रेजी में एक लंबा और अधिक तकनीकी अद्यतन है।

We are removing support for insecure TLS protocol versions, specifically TLSv1.0 and TLSv1.1, which your browser software relies on to connect to our sites. This is usually caused by outdated browsers, or older Android smartphones. Or it could be interference from corporate or personal "Web Security" software, which actually downgrades connection security.

You must upgrade your web browser or otherwise fix this issue to access our sites. This message will remain until Jan 1, 2020. After that date, your browser will not be able to establish a connection to our servers.

Дифференциальное уравнение с разделенными переменными записывается в виде: (1). В этом уравнении одно слагаемое зависит только от x, а другое – от y. Проинтегрировав почленно это уравнение, получаем:
– его общий интеграл.

Пример : найти общий интеграл уравнения:
.

Решение: данное уравнение – дифференциальное уравнение с разделенными переменными. Поэтому
или
Обозначим
. Тогда
– общий интеграл дифференциального уравнения.

Уравнение с разделяющимися переменными имеет вид (2). Уравнение (2)легко сводиться к уравнению (1) путем почленного деления его на
. Получаем:

– общий интеграл.

Пример: Решить уравнение .

Решение: преобразуем левую часть уравнения: . Делим обе части уравнения на


Решением является выражение:
т.е.

Однородные дифференциальные уравнения. Уравнения Бернулли. Линейные дифференциальные уравнения первого порядка.

Уравнение вида называетсяоднородным , если
и
– однородные функции одного порядка (измерения). Функция
называется однородной функцией первого порядка (измерения), если при умножении каждого ее аргумента на произвольный множительвся функция умножиться на, т.е.
=
.

Однородное уравнение может быть приведено к виду
. С помощью подстановки
(
)однородное уравнение приводится к уравнению с разделяющимися переменными по отношению к новой функции.

Дифференциальное уравнение первого порядка называется линейным , если его можно записать в виде
.

Метод Бернулли

Решение уравнения
ищется в виде произведения двух других функций, т.е. с помощью подстановки
(
).

Пример: проинтегрировать уравнение
.

Полагаем
. Тогда , т.е. . Сначала решаем уравнение
=0:


.

Теперь решаем уравнение
т.е.


. Итак, общее решение данного уравнения есть
т.е.

Уравнение Я. Бернулли

Уравнение вида , где
называетсяуравнением Бернулли. Данное уравнение решается с помощью метода Бернулли.

Однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Однородным линейным дифференциальным уравнением второго порядка называется уравнение вида (1) , гдеипостоянны.

Частные решения уравнения (1) будем искать в виде
, гдек – некоторое число. Дифференцируя эту функцию два раза и подставляя выражения для
в уравнение (1), получимт.е.или
(2) (
).

Уравнение 2 называется характеристическим уравнением дифференциального уравнения.

При решении характеристического уравнения (2) возможны три случая.

Случай 1. Корнииуравнения (2) действительные и различные:

и

.

Случай 2. Корнииуравнения (2) действительные и равные:
. В этом случае частными решениями уравнения (1) являются функции
и
. Следовательно, общее решение уравнения (1) имеет вид
.

Случай 3. Корнииуравнения (2) комплексные:
,
. В этом случае частными решениями уравнения (1) являются функции
и
. Следовательно, общее решение уравнения (1) имеет вид

Пример. Решить уравнение
.

Решение: составим характеристическое уравнение:
. Тогда
. Общее решение данного уравнения
.

Экстремум функции нескольких переменных. Условный экстремум.

Экстремум функции нескольких переменных

Определение. Точка М (х о о ) называется точкой максимума (минимума) функции z = f (x , у), если существует окрестность точки М, такая, что для всех точек {х, у) из этой окрестности выполня­ется неравенство
(
)

На рис. 1 точка А
- есть точка минимума, а точка В
-
точка максимума.

Необходи­мое условие экстремума - многомерный аналог теоре­мы Ферма.

Теорема. Пусть точка
– есть точка экстре­мума дифференцируемой функ­ции
z = f (x , у). Тогда частные производные
и
в
этой точке равны нулю.

Точки, в которых выполнены необходимые условия экстрему­ма функции z = f (x , у), т.е. частные производные z " x и z " y равны нулю, называются критическими или стационарными.

Равенство частных производных нулю выражает лишь необходи­мое, но недостаточное условие экстремума функции нескольких переменных.

На рис. изображена так называемая седловая точка М (х о о ). Частные производные
и
равны ну­лю, но, очевидно, никакого экс­тремума в точке М(х о о ) нет.

Такие седловые точки явля­ются двумерными аналогами точек перегиба функций одной переменной. Задача заключается в том, чтобы отделить их от то­чек экстремума. Иными слова­ми, требуется знать достаточное условие экстремума.

Теорема (достаточное условие экстремума функции двух пере­менных). Пусть функция z = f (x , у): а) определена в некоторой окре­стности критической точки (х о о ), в которой
=0 и
=0
;

б) имеет в этой точке непрерывные частные производные вто­рого порядка
;

;
Тогда, если ∆=АС- В 2 >0, то в точке (х о о ) функ­ция z = f (x , у) имеет экстремум, причем если А<0 - максимум, если А>0 - минимум. В случае ∆=АС- В 2 <0, функция z = f (x , у) экстре­мума не имеет. Если ∆=АС- В 2 =0, то вопрос о наличии экстрему­ма остается открытым.

Исследование функции двух переменных на экстремум реко­мендуется проводить по следующей схеме:

    Найти частные производные функции z " x и z " y .

    Решить систему уравнений z " x =0, z " y =0 и найти критические точки функции.

    Найти частные производные второго порядка, вычислить их значения в каждой критической точке и с помощью достаточ­ного условия сделать вывод о наличии экстремумов.

    Найти экстремумы (экстремальные значения) функции.

Пример. Найти экстремумы функции

Решение. 1. Находим частные производные


2. Критические точки функции находим из системы уравнений:

имеющей четыре решения (1; 1), (1; -1), (-1; 1) и (-1; -1).

3. Находим частные производные второго порядка:

;
;
, вычисляем их значения в каждой критической точке и проверяем в ней выпол­нение достаточного условия экстремума.

Например, в точке (1; 1) A = z "(1; 1)= -1; В=0; С= -1. Так как = АС- В 2 = (-1) 2 -0=1 >0 и А=-1<0, то точка (1; 1) есть точка максимума.

Аналогично устанавливаем, что (-1; -1) - точка минимума, а в точках (1; -1) и (-1; 1), в которых =АС- В 2 <0, - экстремума нет. Эти точки являются седловыми.

4. Находим экстремумы функции z max = z(l; 1) = 2, z min = z(-l; -1) = -2,

Условный экстремум. Метод множителей Лагранжа.

Рассмотрим задачу, специфическую для функций нескольких переменных, когда ее экстремум ищется не на всей области опреде­ления, а на множестве, удовлетворяющем некоторому условию.

Пусть рассматривается функция z = f (x , y ), аргументы х и у которой удовлетворяют условию g (х,у) = С, называемому уравне­нием связи.

Определение. Точка
называется точкой
условного мак­симума (минимума), если существует такая окрестность этой точки, что для всех точек (х,у) из этой окрестности удовлетворя­ющих условию g (x , y ) = С, выполняется неравенство

(
).

На рис. изображена точка условного максимума
.
Очевидно, что она не является точкой безусловного экстремума функции z = f (x , y ) (на рис. это точка
).

Наиболее простым способом нахождения условного экстре­мума функции двух переменных является сведение задачи к оты­сканию экстремума функции одной переменной. Допустим уравнение связи g (x , y ) = С удалось разрешить относи­тельно одной из перемен­ных, например, выразить у через х:
.
Подста­вив полученное выражение в функцию двух перемен­ных, получим z = f (x , y ) =
, т.е. функцию одной переменной. Ее экстремум и будет услов­ным экстремумом функ­ции z = f (x , y ).

Пример. х 2 + y 2 при условии 3х +2у = 11.

Решение. Выразим из уравнения 3х +2у = 11 переменную y через переменную x и подставим полученное
в функциюz. Получим z = x 2 +2
илиz =
.
Эта функция имеет единственный минимум при = 3. Соответствующее значение функции
Таким образом, (3; 1) - точка условного экстремума (минимума).

В рассмотренном примере уравнение связи g (x , у) = С оказа­лось линейным, поэтому его легко удалось разрешить относи­тельно одной из переменных. Однако в более сложных случаях сделать это не удается.

Для отыскания условного экстремума в общем случае исполь­зуется метод множителей Лагранжа.

Рассмотрим функцию трех переменных

Эта функция называется функцией Лагранжа, а - множите­лем Лагранжа. Верна следующая теорема.

Теорема. Если точка
является точкой условного экс­тремума функции
z = f (x , y ) при условии g (x , y ) = С, то существует значение такое, что точка
является точкой экстре­мума функции
L { x , y , ).

Таким образом, для нахождения условного экстремума функ­ции z = f (х,у) при условии g (x , y ) = С требуется найти решение системы

На рис. показан геометрический смысл условий Ла­гранжа. Линия g (х,у) = С пунктирная, линия уровня g (x , y ) = Q функции z = f (x , y ) сплошные.

Из рис. следует, что в точке условного экстремума линия уровня функции z = f (x , y ) касает­ся линии g (x , y ) = С.

Пример. Найти точки максимума и мини­мума функции z = х 2 + y 2 при условии 3х +2у = 11, ис­пользуя метод множителей Ла­гранжа.

Решение. Составляем функцию Лагранжа L = х 2 + 2у 2 +

Приравнивая к нулю ее частные производные, получим систему уравнений

Ее единственное решение (х=3, у=1, =-2). Таким образом, точкой условного экстремума может быть только точка (3;1). Не­трудно убедиться в том, что в этой точке функция z = f (x , y ) имеет условный минимум.

Дифференциальные уравнения.

Основные понятия об обыкновенных дифференциальных уравнениях.

Определение 1. Обыкновенным дифференциальным уравнением n – го порядка для функции y аргумента x называется соотношение вида

где F – заданная функция своих аргументов. В названии этого класса математических уравнений термин «дифференциальное» подчеркивает, что в них входят производные (функции, образованные как результат дифференцирования); термин – «обыкновенное» говорит о том, что искомая функция зависит только от одного действительного аргумента.

Обыкновенное дифференциальное уравнение может не содержать в явном виде аргумент x, искомую функцию и любые ее производные, но старшая производная обязана входить в уравнение n- го порядка. Например

а) – уравнение первого порядка;

б) – уравнение третьего порядка.

При написании обыкновенных дифференциальных уравнений часто используются обозначения производных через дифференциалы:

в) – уравнение второго порядка;

г) – уравнение первого порядка,

образующее после деления на dx эквивалентную форму задания уравнения: .

Функция называется решением обыкновенного дифференциального уравнения, если при подстановке в него оно обращается в тождество.

Например, уравнение 3-го порядка

Имеет решение .

Найти тем или иным приемом, например, подбором, одну функцию, удовлетворяющую уравнению, не означает решить его. Решить обыкновенное дифференциальное уравнение – значит найти все функции, образующие при подстановке в уравнение тождество. Для уравнения (1.1) семейство таких функций образуется с помощью произвольных постоянных и называется общим решением обыкновенного дифференциального уравнения n -го порядка, причем число констант совпадает с порядком уравнения: Общее решение может быть, и не разрешено явно относительно y(x) : В этом случае решение принято называть общим интегралом уравнения (1.1).

Например, общим решением дифференциального уравнения является следующее выражение: , причем второе слагаемое может быть записано и как , так как произвольная постоянная , делённая на 2, может быть заменена новой произвольной постоянной .

Задавая некоторые допустимые значения всем произвольным постоянным в общем решении или в общем интеграле, получаем определенную функцию, уже не содержащую произвольных констант. Эта функция называется частным решением или частным интегралом уравнения (1.1). Для отыскания значений произвольных постоянных, а следовательно, и частного решения, используются различные дополнительные условия к уравнению (1.1). Например, могут быть заданы так называемые начальные условия при (1.2)

В правых частях начальных условий (1.2) заданы числовые значения функции и производных, причем, общее число начальных условий равно числу определяемых произвольных констант.

Задача отыскания частного решения уравнения (1.1) по начальным условиям называется задачей Коши.

§ 2. Обыкновенные дифференциальные уравнения 1-го порядка – основные понятия.

Обыкновенное дифференциальное уравнение 1-го порядка (n =1) имеет вид: или, если его удается разрешить относительно производной: . Общее решение y=y(x,С) или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядка позволяет определить значение константы из общего решения или из общего интеграла. Таким образом, будет найдено частное решение или, что тоже, будет решена задача Коши. Вопрос о существовании и единственности решения задачи Коши является одним из центральных в общей теории обыкновенных дифференциальных уравнений. Для уравнения 1-го порядка, в частности, справедлива теорема, принимаемая здесь без доказательства.

Теорема 2.1. Если в уравнении функция и ее частная производная непрерывны в некоторой области D плоскости XOY , и в этой области задана точка , то существует и притом единственное решение , удовлетворяющее как уравнению , так и начальному условию .

Геометрически общее решение уравнения 1-го порядка представляет собой семейство кривых на плоскости XOY , не имеющих общих точек и отличающихся друг от друга одним параметром – значением константы C . Эти кривые называются интегральными кривыми для данного уравнения. Интегральные кривые уравнения обладают очевидным геометрическим свойством: в каждой точке тангенс угла наклона касательной к кривой равен значению правой части уравнения в этой точке: . Другими словами, уравнение задается в плоскости XOY поле направлений касательных к интегральным кривым. Замечание: Необходимо отметить, что к уравнению приводится уравнение и так называемое уравнение в симметрической форме .

Дифференциальные уравнения 1-го порядка с разделяющимися переменными.

Определение. Дифференциальным уравнением с разделяющимися переменными называется уравнение вида (3.1)

или уравнение вида (3.2)

Для того, чтобы в уравнении (3.1) разделить переменные, т.е. привести это уравнение к так называемому уравнению с разделенными переменными, произвести следующие действия:

;

Теперь надо решить уравнение g(y)= 0 . Если оно имеет вещественное решение y=a, то y=a тоже будет решением уравнения (3.1).

Уравнение (3.2) приводится к уравнению с разделенными переменными делением на произведение :

, что позволяет получить общий интеграл уравнения (3.2): . (3.3)

Интегральные кривые (3.3) будут дополнены решениями , если такие решения существуют.

Решить уравнение: .

Разделяем переменные:

.

Интегрируя, получаем

Рассмотрен способ решения дифференциальных уравнений, приводящихся к уравнениям с разделяющимися переменными. Дан пример подробного решения дифференциального уравнения, приводящегося к уравнению с разделяющимися переменными.

Содержание

Постановка задачи

Рассмотрим дифференциальное уравнение
(i) ,
где f - функция, a, b, c - постоянные, b ≠ 0 .
Это уравнение приводится к уравнению с разделяющимися переменными.

Метод решения

Делаем подстановку:
u = ax + by + c
Здесь y - функция от переменной x . Поэтому u - тоже функция от переменной x .
Дифференцируем по x
u′ = (ax + by + c)′ = a + by′
Подставляем (i)
u′ = a + by′ = a +b f(ax + by + c) = a + b f(u)
Или:
(ii)
Разделяем переменные. Умножаем на dx и делим на a + b f(u) . Если a + b f(u) ≠ 0 , то

Интегрируя, мы получаем общий интеграл исходного уравнения (i) в квадратурах:
(iii) .

В заключении рассмотрим случай
(iv) a + b f(u) = 0 .
Предположим, что это уравнение имеет n корней u = r i , a + b f(r i ) = 0 , i = 1, 2, ... n . Поскольку функция u = r i является постоянной, то ее производная по x равна нулю. Поэтому u = r i является решением уравнения (ii) .
Однако, уравнение (ii) не совпадает с исходным уравнением (i) и, возможно, не все решения u = r i , выраженные через переменные x и y , удовлетворяют исходному уравнению (i) .

Таким образом, решением исходного уравнения является общий интеграл (iii) и некоторые корни уравнения (iv) .

Пример решения дифференциального уравнения, приводящегося к уравнению с разделяющимися переменными

Решить уравнение
(1)

Делаем подстановку:
u = x - y
Дифференцируем по x и выполняем преобразования:
;

Умножаем на dx и делим на u 2 .

Если u ≠ 0 , то получаем:

Интегрируем:

Применяем формулу из таблицы интегралов :

Вычисляем интеграл

Тогда
;
, или

Общее решение:
.

Теперь рассмотрим случай u = 0 , или u = x - y = 0 , или
y = x .
Поскольку y′ = (x)′ = 1 , то y = x является решением исходного уравнения (1) .

;
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.