Устройство и принцип действия оптронов. Структурная схема оптронов

Описание, характеристики, Datasheet и методы проверки оптронов на примере PC817.

В продолжение темы «Популярные радиодетали при ремонтах импульсных блоков питания» разберем еще одну деталь- оптопара (оптрон) PC817. Он состоит из светодиода и фототранзистора. Между собой электрически никак не связанны, благодаря чему на основе PC817 можно реализовать гальваническую развязку двух частей схемы — например с высоким напряжением и с низким. Открытие фототранзистора зависит от освещенности светодиодом. Как это происходит более подробно я разберу в следующей статье где в экспериментах подавая сигналы с генератора и анализируя его при помощи осциллографа можно понять более точную картину работы оптопары.

Еще в других статьях я расскажу о нестандартном использовании оптрона первая в роли , а во второй . И используя эти схемные решения соберу очень простой тестер оптопар. Которому не не нужны никакие дорогие и редкие приборы, а всего лишь несколько дешевых радиодеталей.

Деталь не редкая и не дорогая. Но от нее зависит очень многое. Она используется практически в каждом ходовом (я не имею ввиду каком нибудь эксклюзивном) импульсном БЛОКЕ ПИТАНИЯ и выполняет роль обратной связи и чаще всего в связке тоже с очень популярной радиодеталью TL431

Для тех читателей, кому легче информацию воспринимать на слух, советуем посмотреть видео в самом низу страницы.

Оптопара (Оптрон) PC817

Краткие характеристики:

Корпус компактный:

  • шаг выводов – 2,54 мм;
  • между рядами – 7,62 мм.

Производитель PC817 – Sharp, встречаются другие производители электронных компонентов выпускают аналоги- например:

  • Siemens – SFH618
  • Toshiba – TLP521-1
  • NEC – PC2501-1
  • LITEON – LTV817
  • Cosmo – KP1010

Кроме одинарного оптрона PC817 выпускаются и другие варианты:

  • PC827 - сдвоенный;
  • PC837 – строенный;
  • PC847 – счетверенный.

Проверка оптопары

Для быстрой проверки оптопары я провел несколько тестовых экспериментов. Сначала на макетной плате.

Вариант на макетной плате

В результате удалось получить очень простую схему для проверки PC817 и других похожих оптронов.

Первый вариант схемы

Первый вариант я забраковал по той причине что он инвертировал маркировку транзистора с n-p-n на p-n-p

Поэтому чтобы не возникало путаницы я изменил схему на следующую;

Второй вариант схемы

Второй вариант работал правильно но неудобно было распаять стандартную панельку

под микросхему

Панелька SCS- 8

Третий вариант схемы

Самый удачный

Uf — напряжение на светодиоде при котором начинает открываться фототранзистор.

в моем варианте Uf = 1.12 Вольт.

В результате получилась такая очень простая конструкция.

Оптопарой называют оптоэлектронный полупроводниковый прибор, содержащий источник и приемник оптического излучения, которые оптически и конструктивно связаны между собой, и предназначенный для выполнения различных функциональных преобразований электрических и оптических сигналов.

Источниками излучения могут быть лампы накаливания, газоразрядные лампы, полупроводниковые излучатели, светодиоды. В интегральных оптоэлектронных схемах источником оптического излучения является инжекционный светодиод, обеспечивающий высокое быстродействие оптопар. Фотоприемниками могут быть: фоторезисторы, фотодиоды, фототранзисторы, фототиристоры. Сочетание в одном конструктивном элементе светодиода с одним из этих фотоприемников позволило создать ряд оптопар с различными характеристиками: резисторных, диодных, транзисторных, тиристорных (рис. 5.19). Связывающим звеном между источником излучения и фотоприемником служит пассивная или активная оптическая среда, выполняющая функции световода.

Рис.8.18. Виды оптопар: резисторная (а), диодная (б), транзисторная (в), тиристорная(г),

Принцип действия оптопары основан на двойном преобразовании энергии. В источниках излучения энергия электрического сигнала преобразуется в оптическое излучение, а в фотоприемниках оптический сигнал преобразуется в электрический сигнал (ток или напряжение). Оптопара представляет собой прибор с электрическими входными и выходными сигналами.

Световод обеспечивает гальваническую развязку входной и выходной цепей (сопротивление изоляции может достигать 10 12 …10 14 Ом, а емкость связи 10 -2 пФ) и однонаправленность передачи сигналов от источника излучения к фотоприёмнику, что характерно для оптических линий связи.

Достоинствами оптопар является:

1. отсутствие электрической связи между входом и выходом, а также обратной связи между фотоприёмником и источником излучения.

2. широкая полоса пропускания электрических колебаний, что позволяет передавать сигналы в диапазоне частот от 0 до 10 14 Гц.

3. высокая помехозащищённость оптического канала, что обусловлено невосприимчивостью фотонов к воздействию внешних электромагнитных полей.

4. простота совмещения оптопар с микросхемами в различных устройствах телекоммуникации.

Оптопары используются в качестве:

а) элемента электрической развязки в цифровых и импульсных устройств, а так же аналоговых устройств.

б) бесконтактного управления высоковольтными источниками питания в различных системах автоматики.

в) ключа для формирования и коммутации мощных импульсов, а так же для связи датчиков с измерительными устройствами и блоками.

Резисторные оптопары наиболее универсальны. Они могут использоваться в аналоговых и ключевых устройствах, имеют широкий диапазон изменения сопротивления (десятки–сотни МОм в неосвещенном и сотни Ом в освещенном состояниях), низкий частотный диапазон. В резисторной оптопаре в качестве излучателя применяются светодиоды, работающие в широком оптическом диапазоне. Для получения энергетических параметров необходимо согласовать излучатель и приемник по спектральным характеристикам.


Резисторные оптопары описываются следующими параметрами входной и выходной цепей:

1. Максимальный входной ток I вх. макс - это максимальное значение среднего входного или постоянного тока.

2. Входное напряжение U вх - это прикладываемое ко входным зажимам излучателя постоянное или эффективное напряжение при рабочем входном токе.

3. Выходной коммутирующий ток I вых. ком - это номинальный выходной ток управляемый нагрузкой.

4. Максимальный выходной ток - это значение тока при котором резисторный оптрон работает длительное время.

5. Максимальное выходное коммутируемое напряжение - это максимальное значение напряжения на выходе оптопары.

6. Максимальная мощность рассеяния на выходе оптопары при которой обеспечивается длительная работоспособность устройства.

7. Выходное темновое и выходное световое сопротивления.

8. Проходная емкость С пр - между входом и выходом оптопары.

9. Сопротивление изоляции R из - это сопротивление между входом и выходом оптопары.

10. Максимальное напряжение изоляции - это максимальное напряжение при котором сохраняется прочность и надежность изделия, прикладываемого между входом и выходом оптотары.

Примерами резисторных оптопар могут быть: ОЭП-16, ОЭП-1, ОЭП-2, ОЭП-9.

Диодные оптопары используются в качестве ключа и могут коммутировать ток с частотой 10 6 …10 7 Гц. Темновое сопротивление достигает 10 8 …10 10 Ом, а при освещении снижается до сотен Ом. Сопротивление между входной и выходной цепями 10 13 …10 15 Ом. В качестве излучателя в диодных оптопарах используется светодиод, работающий в инфракрасной области излучения, и в качестве фотоприемника - кремневый фотодиод. Светодиод имеет максимум спектральной характеристики на длине волны около 1мкм.

Диодные оптопары описываются следующими параметрами входной и выходной цепями:

1. U вх - входное напряжение определяется при заданном входном токе, протекающем через светодиод;

2. I вх. макс - это максимальное значение постоянного тока или импульсного тока, при котором обеспечивается долговременная надежная работа оптопары;

3. U вх. обр. макс - это максимальное входное обратное напряжение прикладываемое ко входу оптопары, при котором обеспечивается долговременная надежная работа оптопары;

4. I т - выходной (тепловой) ток фотодиода при отсутствии входного (фотопотока);

5. I вых. обр - выходной обратный ток при заданном напряжении на выходе и отсутствие входного тока.

6. U вых. макс. обр - максимальное обратное напряжение выходной цепи, при котором фотодиод работает надежно и долговременно;

7. t нр - время нарастания выходного сигнала, при котором амплитуда выходного напряжения изменяется от 0,1 до 0,5 U вых. макс;

8. t сп - время спада выходного сигнала. За этот промежуток времени выходное напряжение уменьшается от 0,9 до 0,5 своего максимального значения.

Примерами диодных оптопар являются АОД101А...АОД101Д, АОД107, ЗОД107А и др.

Транзисторные оптопары имеют большую чувствительность, чем диодные. Быстродействие не превышает 10 5 Гц. В транзисторной оптопаре используется светодиод с длиной волны излучения около 1 мк м, а в качестве фотоприемника - кремниевый фототранзистор n-p-n-типа.

Если отсутствует оптическое излучение, то в цепи коллектора фототранзистора всегда протекает небольшой обратный ток (темновой ток), величина которого сильно зависит от температуры. Для снижения величины темнового тока включается внешний резистор между выводами базы и эмиттера величиной порядка 0,1...1,0 М Ом.

Транзисторная оптопара описывается параметрами входной и выходной цепей. Учитывая что в диодных и транзисторных оптопарах используются практически одинаковые светодиоды, то входные параметры транзисторных оптопар такие же как и у диодных оптопар.

Транзисторный оптрон описывается следующими параметрами выходной цепи:

1. U ост - остаточное выходное напряжение на выходе оптопары, когда фототранзистор открыт;

2. I ут.вых - ток протекающий в выходной цепи при закрытом фототранзисторе (ток утечки);

3. P ср. макс - средняя максимальная мощность рассеяния при которой оптопара сохраняет долговременную надежную работу;

4. I вых. макс - максимальный выходной ток фототранзистора при надежной его работе;

5. t нр - время нарастания выходного сигнала, при котором выходное напряжение изменяется от 0,9 до 0,1 своего максимального значения.

6. t сп - время спада выходного напряжения, при котором выходное напряжение увеличивается от 0,1 до 0,9 максимального значения.

7. t вкл - время включения - это время с момента подачи входного сигнала до момента, когда входной сигнал достигает 0,1 U вх. макс. или это время стада - t сп выходного напряжения до уровня 0,1 U вых. макс.

8. t выкл - время выключения - это время за которое входной сигнал уменьшается до 0,9 U вх.макс. или это t нр - время нарастания выходного напряжения до 0,9 U вых.макс.

9. Максимальное напряжение изоляции U из - напряжение, которое может быть приложено между входом и выходом и при котором сохраняется электрическая прочность оптопары.

Примерами транзисторных оптопар являются: АОТ123А, ЗОТ123Б, АОТ110(А,Б,В), ЗОТ123А, АОТ123Т и др.

Тиристорные оптопары применяются в ключевых режимах, для формирования и коммутации мощных импульсов. Излучателем в тиристорной оптопаре служит светодиод, а приемником - кремневый фототиристор. Фототиристор сохраняет включенное состояние даже при прекращении излучения светодиода. Всвязи с этим управляющий световой сигнал от светодиода может подаваться только на время необходимое для отпирания тиристора. Все это позволяет снизить энергию, необходимую для управления фототиристорной оптопарой. Для запирания фототиристора необходимо снять внешнее напряжение. Все это отличает тиристорную оптопару от транзисторной. Тиристорная оптопара описывается следующими параметрами:

1. Ток включения I вкл (входной ток срабатывания I вх, сраб) - постоянный прямой ток оптопары, который переводит оптопару в открытое состояние при заданном режиме на входе;

2. Импульсный ток включения I вкл. им - амплитуда входного импульса тока заданной длительности, которая включает оптопары в открытое состояние;

3. U вх - входное напряжение на входе светодиода при заданном входном токе включения;

4. I вх - входной постоянный ток светодиода;

5. I вх. им - входной импульсный ток оптопары;

6. I вых. закр - выходной ток в закрытом состоянии, который протекает в выходной цепи при закрытом состоянии фототиристора и заданном режиме;

7. I вых. обр - выходной обратный ток протекающий при закрытом состоянии фототиристора;

8. U ост - выходное напряжение на открытом фототиристоре;

9. I вых. уд - ток удержания - наименьший ток фототиристора в открытом состоянии;

10. U вых.мин - минимальное постоянное выходное напряжение на фототиристоре при котором обеспечивается включение оптопары при заданном сигнале на входе;

11. U вых.обр - максимальное выходное напряжение при котором обеспечивается заданная надежность;

12. t вкл - время включения - это интервал времени между входным импульсом тока на уровне 0,5 и выходным током на уровне 0,9 максимального значения;

13. t выкл - время выключения - это промежуток времени от момента окончания выходного тока до момента начала следующего выходного тока, под действием которого фототиристор не переключается в открытое состояние.

14. C вых - выходная емкость на выходе тиристорной оптопары в закрытом состоянии.

Примеры тиристорных оптопар: АОУ103А, ЗОУ103А, АОУ103В, ЗОУ103Б.

Инструкция

Если оптрон, исправность которого поставлена под , впаян в плату, необходимо отключить ее , разрядить на ней электролитические конденсаторы, а затем выпаять оптопару, запоминая, как она была впаяна.

Оптроны имеют разные излучатели (лампы накаливания, неоновые лампы, светодиоды, светоизлучающие конденсаторы) и разные приемники излучения (фоторезисторы, фотодиоды, фототранзисторы, фототиристоры, фотосимисторы). Также они цоколевкой. Поэтому необходимо найти данные о типе и цоколевке оптопары либо в справочнике или даташите, либо в схеме того прибора, где он был установлен. Нередко цоколевки оптрона нанесена прямо на плату этого прибора.Если прибор современный, можно почти наверняка быть уверенным, что излучателем в нем светодиод.

Если приемником излучения является фотодиод, к нему подключите элемент оптрона включите, соблюдая полярность, в цепочку, состоящую из источника постоянного напряжения в несколько вольт, резистора, рассчитанного таким образом, чтобы ток через приемник излучения не превысил допустимого, и мультиметра, работающего в режиме измерения тока на соответствующем пределе.

Теперь введите излучатель оптопары в рабочий режим. Для включения светодиода пропустите через него в прямой полярности постоянный ток, равный номинальному. На лампу накаливания подайте номинальное напряжение. Неоновую лампу или светоизлучающий конденсатор, соблюдая осторожность, подключите к сети через резистор сопротивлением от 500 кОм до 1 МОм и мощностью не менее 0,5 Вт.

Фотоприемник должен среагировать на включение излучателя резким изменением режима. Попробуйте теперь несколько раз выключить и включить излучатель. Фототиристор и фоторезистор останутся открытыми и после снятия управляющего воздействия вплоть до отключения их питания. Остальные типы фотоприемников будут реагировать на каждое изменение управляющего сигнала.Если оптрон имеет открытый оптический канал, убедитесь в изменении реакции приемника излучения при перекрытии этого канала.

Сделав вывод о состоянии оптрона, экспериментальную установку обесточьте и разберите. После этого впаяйте оптопару обратно в плату либо замените на другую. Продолжите ремонт устройства, в состав которого входит оптрон.

Оптопара или оптрон состоит из излучателя и фотоприемника, отделенных друг от друга слоем воздуха или прозрачного изолирующего вещества. Они не связаны между собой электрически, что позволяет использовать прибор для гальванической развязки цепей.

Инструкция

К фотоприемнику оптопары присоедините измерительную цепь в соответствии с его типом. Если приемником является фоторезистор, используйте обычный омметр, причем, полярность неважна. При использовании в качестве приемника фотодиода подключите микроамперметр без источника питания (плюсом к аноду). Если сигнал принимается фототранзистором структуры n-p-n, подключите цепь из резистора на 2 килоома, батарейки на 3 вольта и миллиамперметра, причем, батарейку присоедините плюсом к коллектору транзистора. В случае, если фототранзистор имеет структуру p-n-p, поменяйте полярность подключения батарейки на обратную. Для проверки фотодинистора составьте цепь из батарейки на 3 В и лампочки на 6 В, 20 мА, подключив ее плюсом к аноду динистора.

В большинстве оптронов излучателем является светодиод либо лампочка накаливания. На лампочку накаливания подайте ее номинальное напряжение в любой полярности. Можно также подать переменное напряжение, действующее значение которого равно рабочему напряжению лампы. Если же излучателем является светодиод, подайте на него напряжение 3 В через резистор на 1 кОм (плюсом к аноду).

Оптопары позволяют решать те же задачи, что и отдельно взятые пары излучатель – фотоприемник, однако на практике они, как правило, более удобны, поскольку в них уже опти­мально подобраны характеристики излучателя и фотоприемника и их взаимное расположение.

Если говорить о наиболее очевидном применении оптопары, не имеющем аналогов среди других приборов, так это элемент гальванической развязки. Опто­пары (или, как их иногда называют, оптроны) применяют в качестве устройств связи между блоками аппаратуры, находящимися под различными потенциала­ми, для сопряжения микросхем, имеющих различные значения логических уров­ней. В этих случаях оптопара передает информацию между блоками, не имею­щими электрической связи, и самостоятельной функциональной нагрузки не несет.

Не менее интересно применение оптопар в качестве элементов оптического бесконтактного управления сильноточными и высоковольтными устройствами.

На оптопарах удобно строить узлы запуска мощных тиратронов, распредели­тельных и релейных устройств, устройств коммутации электропитания и т.п.

Оптопары с открытым оптическим каналом упрощают решение задач конт­роля параметров различных сред, позволяют создавать различные датчики (влажности, уровня и цвета жидкости, концентрации пыли и т.п.).

Одной из важнейших является линейная схема, пред­назначенная для неискаженной передачи по гальваниче­ски развязанной цепи аналоговых сигналов. Сложность этой проблемы связана с тем, что для линеаризации передаточной характеристики в широком диапазоне то­ков и температур необходима петля обратной связи, принципиально не реализуемая при наличии гальваниче­ской развязки. Поэтому идут по пути использования двух идентичных оптронов (или дифференциального оптрона), один из которых выступает в качестве вспо­могательного элемента, обеспечивающего обратную связь (рис. 6.13). В таких схемах удобно использовать диффе­ренциальные оптопары КОД301А, КОД303А.

На рис. 6.14 представлена схема двуступенного транзисторного усилителя с оптоэлектронной связью. Изменение тока коллектора транзистора VT 1 вызы­вает соответствующее изменение тока светодиода оптопары U 1 и сопротивле­ния ее фоторезистора, который включен в цепь базы транзистора VT 2 . На на­грузочном резисторе R 2 выделя

ется усиленный выходной сигнал. Применение оптопары практически полностью устраняет передачу сигнала с выхода на вход усилителя.

Оптопары удобны для межблочной гальванической развязки в радиоэлектронной аппаратуре. Например, в схеме гальванической развязки двух блоков (рис. 6.15) сигнал с выхода блока 1 передается на вход блока 2 через диодную оптопару U1 . Если в качестве второго блока использована интегральная микросхема с малым входным током, необходимость использования уси­лителя отпадает, а фотодиод оптопары в этом случае работает в фотогенера­торном режиме.

Рис. 6.13. Гальваническая развязка аналогового сигнала: 01, 02 – оптроны, У1, У2 – операционные усилители

Рис. 6.14. Двухкаскадный транзисторный усилитель с оптоэлектронной связью

Оптопары и оптоэлектронные микросхемы применяют в устройствах пере­дачи информации между блоками, не имеющими замкнутых электрических свя­зей. Применение оптопар существенно повышает помехоустойчивость каналов связи, устраняет нежелательные взаимодействия развязываемых устройств по цепям питания и общему проводу. Цепи сопряжения с применением оптопар широко используют в вычислительной и измерительной технике, в устройствах автоматики, особенно когда датчики или другие приемные устройства работают в условиях, опасных или недоступных человеку.

Например, реализация связи гальванически независимых логических элемен­тов может осуществляться с помощью оптоэлектронного переключателя (рис. 6.16). Оптоэлектронным переключателем может служить микросхема К249ЛП1, в состав которой входят бескорпусная оптопара и стандартный вентиль.

Оптопары позволяют упрощать решение задач сопряжения блоков, разно­родных по функциональному назначе
нию, характеру питания, например испол­нительных механизмов, питаемых от сети переменного тока, и цепей форми­рования управляющих сигналов, питаемых от низковольтных источников по­стоянного тока.

Большую группу задач представляет также согласование цифровых микро­схем с разными видами логики: транзисторно-транзисторной логикой (ТТЛ), эмиттерносвя

занной логикой (ЭСЛ), комплементарной структурой «металл-окисел-полупроводник» (КМОП) и др. Пример схемы со­гласования элемента ТТЛ с МДП с помощью транзисторной оптопары показан на рисунке 6.17. Входная и выходная ступени не имеют общих электрических цепей и могут работать в самых различных условиях и режимах.

Идеальная гальваническая развязка нужна во многих практических случа­ях, например в медицинской диагностической аппаратуре, когда датчик при­креплен к телу человека, а измерительный блок, усиливающий и преобразую­щий сигналы датчика, подключен к сети. При неисправности измерительного блока может возникнуть опасность поражения человека электрическим током. Собственно датчик питается от отдельного низковольтного источника питания и подключается к измерительному блоку через развязывающую оптопару (рис. 6.18).

Оптопары удобны и в других случаях, когда «незаземленные» входные устройства приходится сопрягать с «заземленными» выходными устройствами. Примерами та

ких задач могут служить соединение линии телетайпной связи с дисплеем, «автоматический секретарь», подключаемый к телефонной линии, и т.п. Например, в схеме сопряжения линии связи с дисплеем (рис. 6.19, а ) операционный усилитель обеспечивает требуемый уровень сигналов на входе дисплея. Аналогично можно связать передающий пульт с линией связи (рис. 6.19, б ).

Рис. 6.19. Сопряжение «незаземленных» и «заземленных» устройств

Рис. 6.20. Оптоэлектронные полупроводниковые реле:

а – нормальноразомкнутое, б – нормальнозамкнутое

Усиленные сигналы фотоприемника удобно передавать на исполнительные механизмы (например, электродвигатели, реле, источники света и т.п.) через оптоэлектронную гальваническую развязку. Примерами такой развязки могут служить два варианта наиболее распространенных полупроводниковых реле, разомкнутых и замкнутых, (рис.6.20). Реле коммутирует сигналы постоянного тока. Сигнал, воспринимаемый фототранзистором оптопары, открывает транзисторы VT1 , VT2 и вклю­чает нагрузку

(рис.6.20, а ) или отключает ее (6.20, б ).

Рис 6.21. Оптоэлектронный импульсный трансформатор

Импульсный трансформатор – весьма распространенный элемент современ­ной радиоэлектронной аппаратуры. Его используют в различных генераторах импульсов, усилителях мощности импульсных сигналов, каналах связи, теле­метрических системах, телевизионной технике и т.п. Традиционное конструк­тивное исполнение импульсного трансформатора с применением магнитопровода и обмоток не совмещается с технологическими решениями, используемыми в микроэлектронике. Частотная характеристика трансформатора во многих случаях не позволяет удовлетворительно воспроизводить как низко -, так и высо­кочастотные сигналы.

Практически идеальный импульсный трансформатор мож­но изготовить на базе диодной оптопары. Например, в схеме оптоэлектронного трансфор­матора с диодной оптопарой изображена (рис. 6.21) транзистор VT1 управ­ляет светодиодом оптопары U1 Сигнал, генерируемый фотодиодом, усиливают транзисторы VT2 и VT3 .

Длительность фронта импульсов в значительной степени зависит от быстро­действия оптопары. Наиболее высоким быстродействием обладают фотодиоды p i n -ст
руктуры. Время нарастания и спада выходного импульса не превышает нескольких десятков наносекунд.

На основе оптопар разработаны и выпускаются оптоэлектронные микросхемы, имеющие в своем составе одну или несколько оптопар, а также согла­сующие микроэлектронные схемы, усилители и другие функциональные эле­менты.

Совместимость оптопар и оптоэлектронных микросхем с другими стандарт­ными элементами микроэлектроники по уровням входных и выходных сигналов, напряжению питания и другим параметрам определили необходимость нормирования специальных параметров и характеристик.

Оптопарой (иначе – оптроном) называют электронные прибора предназначенные для преобразования электрических сигналов в световые, их передачи через оптические каналы и повторного преобразования сигнала вновь в электрический. Конструкция оптрона подразумевает наличие специального светового излучателя (в современных устройствах для этого применяются световые диоды, прежние модели оснащались малогабаритными лампами накаливания) и устройства, отвечающего за преобразование полученного оптического сигнала (фотоприёмника). Обе эти составляющие объединяются при помощи оптического канала и общего корпуса.

Классификация разновидностей оптопар

Существует несколько характеристик, в соответствии с которыми можно разделить модели оптопар на несколько групп.

В зависимости от степени интеграции:

  • элементарный оптрон – включает в себя 2 и более элемента объединённых общим корпусом;
  • оптронная интегральная схема – конструкция состоит из одной и более оптопар и, помимо этого, ещё может быть оснащена дополняющими элементами (например, усилителем).

В зависимости от разновидности оптического канала:

  • Оптический канал открытого типа;
  • Оптический канал закрытого типа.

В зависимости от типа фотоприёмника:

  • Фоторезисторные (или просто резисторные оптопары);
  • Фотодиодные оптопары;
  • Фототранзисторные (используется обычный или составной биполярный фототранзистор) оптопары;
  • , либо фотосимисторные оптопары;
  • Оптопары функционирующие с помощью фотогальванического генератора (солнечная батарейка).

Конструкция устройств последнего вида зачастую дополняются полевыми транзисторами, за управление затвором которого отвечает тот же генератор.

Фотосимисторные оптроны или те, которые оснащены полевыми транзисторами, могут называться «оптореле», либо « ».

Рис.1: Устройство оптрона

Оптоэлектронные устройства работают по-разному в зависимости от того, к какому из двух видов направлений они относятся:

  • Электронно-оптическое.

Работа прибора базируется на принципе, в соответствии с которым происходит преобразование световой энергии в электрическую. Причём, переход осуществляется посредством твёрдого тела и происходящих в нём процессов внутреннего фотоэлектрического эффекта (выражающегося в испускании веществом электронов под воздействием фотонов) и эффекта свечения под действием электрического поля.

  • Оптическое.

Прибор функционирует благодаря тонкому взаимодействию твёрдого тела и электромагнитного излучения, а также используя лазерные, голографические и фотохимические устройства.

Фотонные электронно-вычислительные машины компонуются с использованием одной из двух категорий оптических элементов:

  • Оптронов;
  • Кванто-оптических элементов.

Они являются моделями устройств соответственно электронно-оптического и оптического направлений.

Будет ли оптрон передавать сигнал линейно, определяется теми характеристиками, которыми обладает вмонтированный в конструкцию фотоприёмник. Наибольшую линейность передачи можно ожидать от резисторных оптронов. Как следствие, процесс эксплуатации подобных устройств отличается наибольшим удобством. Ступенью ниже стоят модели с фотодиодами и одиночными биполярными транзисторами.

Для обеспечения работы импульсных приборов применяют оптроны на биполярных, либо полевых транзисторах, поскольку там нет необходимости в линейной передаче сигнала.

Наконец, фототиристорные оптроны монтируют, чтобы обеспечить гальваническую изоляцию и безопасность эксплуатации устройства.

Применение

Существует множество сфер, в которых необходимо использование оптронов. Такая широта применения обусловлена тем, что они являются элементами, обладающими множеством различных свойств и на каждое их качество приходится отдельная сфера применения.

  • Фиксация механического воздействия (применяются устройства, оснащённые оптическим каналом открытого типа, который можно перекрыть (оказать механическое воздействие), а значит, само устройство можно использовать как сенсор):
    • Детекторы наличия (выявление наличия/отсутствия бумажных листов в принтере);
    • Детекторы конечной (начальной) точки;
    • Счётчики;
    • Дискретные спидометры.
  • Гальваническая изоляция (использование оптронов позволяет передавать сигнал не связанный с напряжением, также с их помощью обеспечивается бесконтактное управление и защита), которая может обеспечиваться:
    • Оптопарой (в большинстве случаев применяется как информационный передатчик);
    • Оптореле (более прочего подходит для управления сигнальными и силовыми цепями).

Оптопары

Использование транзисторных, либо интегральных оптопар особенно актуально, если требуется обеспечить гальваническую изоляцию в сигнальной цепи или цепи с незначительным управляющим током. Роль элемента управления могут выполнять трёхэлектродные полупроводниковые приборы, схемы, управляющие дискретными сигналами, а также цепи с особой специализацией.

Рис2: Оптопары 5000 Vrms 50mA.

Параметры и особенности работы оптопар

Опираясь на точную конструкцию прибора, можно определить его электрическую прочность. Под этим термином понимается значение напряжения, возникающего между цепями входа и выхода.Так, производители оптопар, обеспечивающих гальваническую изоляцию, демонстрируют целый ряд моделей с различными корпусами:

  • SSOP;
  • Miniflat-lead.

В зависимости от типа корпуса у оптопары формируется то или иное напряжение изоляции. Чтобы создать условия, в которых уровень напряжения достаточный для пробоя изоляции был достаточно велик, следует сконструировать оптопару таким образом, чтобы следующие детали были расположены достаточно далеко друг от друга:

  • и оптический регистратор;
  • Внутренняя и внешняя сторона корпуса.

В отдельных случаях можно обнаружить оптопары специализированной группы, изготавливаемые в соответствии с международным стандартом безопасности. Уровень электрической прочности у этих моделей на порядок выше.

Другой значимый параметр транзисторной оптопары носит название «коэффициента передачи тока». Согласно значению этого коэффициента устройство относят к той или иной категории, что и отображается в названии модели.

Относительно уровня нижней рабочей частоты оптронов никаких ограничений нет: они хорошо функционируют в цепи с постоянным током. А верхняя граница рабочей частоты этих приборов, задействованных в передаче сигналов цифрового происхождения, исчисляется в сотнях мегагерц. Для оптронов линейного типа этот показатель ограничивается десятками мегагерц. Для самых медленных конструкций, включающих в себя лампу накаливания, наиболее характерна роль низкочастотных фильтров, работающих на частотах, не достигающих 10 Герц

Транзисторная оптопара и производимые ею шумы

Существует две основные причины тому, что работа транзисторной пары сопровождается шумовыми эффектами:

Чтобы побороть первую причину, понадобится вмонтировать особый экран. Вторая же устраняется через верно подобранный рабочий режим.

Оптореле

Оптореле, иначе называемое твердотельным реле, обычно используется для регуляции работы цепи с большими управляющими токами. Роль управляющего элемента здесь обычно выполняют два MOSFET транзистора со встречным подключением, подобная конфигурация обеспечивает возможность функционирования в условиях переменного тока.

Рис.3: Оптореле КР293 КП2В

Классификация видов оптореле

Для оптореле определено три типа топологий:

  1. Нормально разомкнутые .Предполагается, что управляющая цепь будет замыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
  2. Нормально замкнутые .Предполагается, что управляющая цепь будет размыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
  3. Переключающая .Третья топология предполагает сочетание каналов нормально-замкнутого и нормально разомкнутого типа.

Оптореле подобно оптопаре имеет характеристику по электрической прочности.

Разновидности оптореле

  • Модели стандартного типа;
  • Модели, имеющие малое сопротивление;
  • Модели, имеющие малое СxR;
  • Модели, имеющие малое напряжение смещения;
  • Модели, имеющие высокое напряжение изоляции.

Сферы применения оптореле

  • Модем;
  • Измерительное устройство;
  • Сопряжение с исполнительным устройством;
  • Автоматические телефонные станции;
  • Электрический, тепловой, газовый счётчик;
  • Коммутатор сигналов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.