Эукариоты. Что такое эукариоты Эукариоты способны

Что такое эукариот? Ответ на этот вопрос заключается в особенностях строения клеток различных типов. Нюансы их организации мы и рассмотрим в нашей статье.

Особенности строения клеток

Клетки живых организмов классифицируют по разным признакам. Один из них - организация наследственного материала, заключенного в молекулах ДНК. Эукариоты - это организмы, в клетках которых находится оформленное ядро. Это двумембранная органелла, содержащая генетический материал. У прокариот данная структура отсутствует. К таким организмам относятся все виды бактерий и архей.

Строение прокариотических клеток

Отсутствие ядра не означает, что у прокариотических организмов нет наследственного материала. Он также закодирован в последовательности нуклеотидов. Однако располагается генетическая информация не в оформленном ядре, а представлена единственной кольцевой молекулой ДНК. Она называется плазмида. Такая молекула прикрепляется к внутренней поверхности плазматической мембраны. Клетки данного типа также лишены целого ряда определенных органелл. Прокариотические организмы характеризуются примитивностью, мелкими размерами и низким уровнем организации.

Что такое эукариот?

К этой многочисленной группе организмов относятся все представители растений, животных и грибов. Вирусы являются неклеточными формами жизни, поэтому в данной классификации не рассматриваются.

Прокариот представлен плазматической мембраной, а внутреннее содержимое - цитоплазмой. Это внутренняя полужидкая среда, которая выполняет опорную функцию, объединяет все структуры в единое целое. Для клеток прокариот также характерно наличие определенного ряда органоидов. Это комплекс Гольджи, эндоплпзматическая сеть, пластиды, лизосомы. Некоторые считают, что эукариоты - это организмы в клетках которых отсутствуют митохондрии. Но это совсем не так. Эти органеллы в клетках эукариот служат местом образования молекул АТФ-носителя энергии в клетке.

Эукариоты: примеры организмов

Эукариотами являются три Однако несмотря на общие черты, у их клеток есть существенные отличия. К примеру, растительные характеризуются содержанием специализированных органелл хлоропластов. Именно в них происходит сложный фотохимический процесс превращения неорганических веществ в глюкозу и кислород. Животные клетки таких структур не имеют. Они способны усваивать только готовые питательные вещества. Отличаются эти структуры и строением поверхностного аппарата. В животных клетках над плазматической мембраной находится гликокаликс. Он представляет собой вязкий поверхностный слой, сосотоящий из белков, липидов и углеводов. Для растений характерна Она располагается над плазматической стенка образована сложными углеводами целлюлозой и пектином, которые придают ей прочность и жесткость.

Что такое эукариот, который представлен группой грибов? Клетки этих удивительных организмов сочетают в себе черты строения как растений, так и животных. В состав их клеточной стенки входят углеводы целлюлоза и хитин. Однако их цитоплпзма не содержит хлоропластов, поэтому они, подобно клеткам животных, способны только к гетеротрофному способу питания.

Прогрессивные черты строения эукариот

Почему все эукариоты являются организмами, которые достигли высокого уровня развития и распространения по планете? Прежде всего, благодаря высокому уровню специализации их органелл. Кольцевая молекуда ДНК, которая содержится в клетках бактерий, обеспечивает самый простой способ их размножения - надвое. В результате данного процесса образуются точные генетические копии дочерних клеток. Размножение такого типа, безусловно, обеспечивает и обеспечивает достаточно быстрое воспроизведение подобных клеток. Однако о появлении новых признаков в ходе деления надвое и речи идти не может. А это означает, что к изменяющимся условиям приспособиться эти организмы не смогут. Для клеток эукариот характерен половой процесс. В его ходе происходит обмен генетической информацией и ее рекомбинация. В результате на свет появляются особи с новыми, часто полезными признаками, которые закреплены в их генотипе и могут передаваться из поколения в поколение. Это и есть проявление наследственной изменчивости, которая является основой эволюции.

Итак, в нашей статье мы рассмотрели, что такое эукариот. Это понятие означает организм, клетки которого содержат ядро. К этой группе организмов относятся все представители растительного и животного мира, а также грибов. Ядро является постоянной клеточной структурой, которая обеспечивает хранение и передачу наследственной информиции организмов, закодированной в последовательности нуклеотидов молекул ДНК.

Эукариоты - (от греческого eu хорошо, полностью и karyon ядро), организмы (все, кроме бактерий), клетки которых имеют оформленное клеточное ядро, отграниченное от цитоплазмы ядерной оболочкой. К Э. относят все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы, простейшие. ЭУКАРИОТЫ - (от греч. eu хорошо, полностью и karyon ядро), организмы, клетки к рых содержат оформленные ядра (ядерные).

Все высшие организмы, клетки которых содержат оформленное ядро и которые претерпевают деление по типу митоза и мейоза. Ядерная ДНК у Э. заключена в хромосомы, обычно не кольцевидные, с гистонами.

Митоз типичен для всех Э.; 2) мембранная система сложна и многообразна. Для огромного большинства их характерно деление ядра с образованием настоящих хромосом и половой процесс, при котором образуются ядра с уменьшенным вдвое (редуцированным) числом хромосом. Хромосомы эукариот связаны с особыми, гистоновыми белками.

Эукариотические клетки часто имеют настоящие жгутики, сложенные из волокон — фибрилл, расположенных по схеме 9+2 — девять по окружности и две в центре. Важная особенность эукариот — наличие в их цитоплазме клеточных органоидов, имеющих свой небольшой геном (совокупность генов) и размножающихся делением. Все клетки, имеющие митохондрии, дышат кислородом, лишь немногие эукариоты потеряли способность к аэробному обмену.

К эукариотам относятся растения, животные, грибы и такой вид живых организмов, как слизевики. В эукариотической клетке имеется около десяти органоидов, большинство из которых отделенные мембранами от цитоплазмы, чего нет у прокариотов. Также у эукариотов имеется ядро, о котором мы уже говорили. Это часть клетки, которая отгорожена от цитоплазмы двойной мембраной.

Есть несколько вариантов деления эукариотов. Изначально все живые организмы делили только на растения и животных. Впоследствии выделили царство грибов, которые значительно различаются и от первых, и от вторых. Слизевики – это полифилетическая группа организмов, которую некоторые относят к простейшим, но конечная классификация этих организмов до конца не классифицирована.

В целом слизевики выглядят, как одна многоядерная клетка, которая видна невооруженным взглядом. С грибами слизевиков роднит спороношения, которые прорастают зооспорами, из которых впоследствии и развивается плазмодий. Дополнительные различия эукариотов. Из органоидов прокариоты имеют только рибосомы 70S (мелкие), а у эукариот имеются не только крупные 80S рибосомы, но и много других органоидов.

Эукариоты имеют гистоны, которых нет у бактерий. Клетка эукариот в 1000 раз больше по объему и в 10 раз больше по диаметру, чем клетка прокариот. Прокариоты – это бактерии (в том числе цианобактерии, они же «сине-зеленые водоросли»). У прокариот нет ядра, кольцевая ДНК (кольцевая хромосома) расположена прямо в цитоплазме (этот участок цитоплазмы называется нуклеоид). У эукариот есть оформленное ядро (наследственная информация отделена от цитоплазмы ядерной оболочкой).

Клетки всех живых организмов (всех царств живой природы) содержат плазматическую мембрану, цитоплазму и рибосомы. Коротко и ясно, спасибо!Жаль, но без учителя или репетитора разобраться во всём этом невозможноПозор и горечь! Бог следит внимательно за теми процессами, которые происходят на Земле, и пока эти процессы развиваются в соответствии с задуманным сценарием он остаётся сторонним наблюдателем.

Все эти группы организмов имеют общий план строения клеток и, по современным представлениям, общее происхождение. Согласно наиболее распространённым гипотезам, эукариоты появились 1,5–2 млрд. лет назад (в среднем или раннем протерозое).

Эукариоты делятся на одноклеточных организмов и многоклеточных, но принцип строения клетки у всех них одинаковый. Главным различием прокариот и эукариот является то, что у прокариот нет оформленного ядра, отделенного мембраной от цитоплазмы. Эукариоты («настоящие ядерные») — организмы, с обособленным в ядре генетическим аппаратом.

Все являются эукариотическими организмами. Они могут быть одноклеточными и многоклеточными , но все имеют общий план строения клеток. Считается, что все эти столь несхожие организмы имеют общее происхождение, поэтому группа ядерных рассматривается как монофилетический таксон наивысшего ранга. Согласно наиболее распространённым гипотезам, эукариоты появились 1,5–2 млрд. лет назад. Важную роль в эволюции эукариот сыграл симбиогенез - симбиоз между эукариотической клеткой, видимо, уже имевшей ядро и способной к фагоцитозу , и поглощенными этой клеткой бактериями - предшественниками митохондрий и пластидов .

Строение эукариотической клетки

См. также категорию Структуры эукариотической клетки

Эукариотические клетки в среднем намного крупнее прокариотических , разница в объёме достигает тысяч раз. Клетки эукариот включают около десятка видов различных структур, известных как органоиды (или органеллы , что, правда, несколько искажает первоначальное значение этого термина), из которых многие отделены от цитоплазмы одной или несколькими мембранами (в прокариотических клетках внутренние органоиды, окруженные мембраной, встречаются редко). Ядро - это часть клетки, окружённая у эукариот двойной мембраной (двумя элементарными мембранами) и содержащая генетический материал: молекулы ДНК , «упакованные» в хромосомы . Ядро обычно одно, но бывают и многоядерные клетки.

Деление на царства

Существует несколько вариантов деления надцарства эукариот на царства. Первыми были выделены царства растений и животных . Затем было выделено царство грибов , которые из-за биохимических особенностей, по мнению большинства биологов, не могут быть причислены ни к одному из этих царств. Также некоторые авторы выделяют царства простейших , миксомицетов , хромистов . Некоторые системы насчитывают до 20 царств. По системе Томаса Кавалир-Смита все эукариоты подразделяются на два монофилетических таксона - Unikonta и Bikonta . Положение таких эукариот, как коллодиктион (Collodictyon ) и Diphylleia , на данный момент не определено.

Отличия эукариот от прокариот

Важнейшая, основополагающая особенность эукариотических клеток связана с расположением генетического аппарата в клетке. Генетический аппарат всех эукариот находится в ядре и защищён ядерной оболочкой (по-гречески «эукариот» значит имеющий ядро). ДНК эукариот линейная (у прокариот ДНК кольцевая и находится в особой области клетки - нуклеоиде , который не отделён мембраной от остальной цитоплазмы). Она связана с белками-гистонами и другими белками хромосом, которых нет у бактерий.

В жизненном цикле эукариот обычно присутствуют две ядерные фазы (гаплофаза и диплофаза). Первая фаза характеризуется гаплоидным (одинарным) набором хромосом, далее, сливаясь, две гаплоидные клетки (или два ядра) образуют диплоидную клетку (ядро), содержащую двойной (диплоидный) набор хромосом. Иногда при следующем делении, а чаще спустя несколько делений клетка вновь становится гаплоидной. Такой жизненный цикл и в целом диплоидность для прокариот не характерны.

Третье, пожалуй, самое интересное отличие, - это наличие у эукариотических клеток особых органелл, имеющих свой генетический аппарат, размножающихся делением и окружённых мембраной. Эти органеллы - митохондрии и пластиды . По своему строению и жизнедеятельности они поразительно похожи на бактерий . Это обстоятельство натолкнуло современных учёных на мысль, что подобные организмы являются потомками бактерий, вступившими в симбиотические отношения с эукариотами. Прокариоты характеризуются малым количеством органелл, и ни одна из них не окружена двойной мембраной. В клетках прокариот нет эндоплазматического ретикулума, аппарата Гольджи, лизосом.

Ещё одно важное различие между прокариотами и эукариотами - наличие у эукариот эндоцитоза , в том числе у многих групп - фагоцитоза . Фагоцитозом (дословно «поедание клеткой») называют способность эукариотических клеток захватывать, заключая в мембранный пузырёк, и переваривать самые разные твёрдые частицы. Этот процесс обеспечивает в организме важную защитную функцию. Впервые он был открыт И. И. Мечниковым у морских звёзд. Появление фагоцитоза у эукариот скорее всего связано со средними размерами (далее о размерных различиях написано подробнее). Размеры прокариотических клеток несоизмеримо меньше, и поэтому в процессе эволюционного развития эукариот у них возникла проблема снабжения организма большим количеством пищи. Как следствие среди эукариот появляются первые настоящие, подвижные хищники .

Большинство бактерий имеет клеточную стенку, отличную от эукариотической (далеко не все эукариоты имеют её). У прокариот это прочная структура, состоящая главным образом из муреина (у архей из псевдомуреина). Строение муреина таково, что каждая клетка окружена особым сетчатым мешком, являющимся одной огромной молекулой. Среди эукариот клеточную стенку имеют многие протисты , грибы и растения. У грибов она состоит из хитина и глюканов, у низших растений - из целлюлозы и гликопротеинов , диатомовые водоросли синтезируют клеточную стенку из кремниевых кислот, у высших растений она состоит из целлюлозы, гемицеллюлозы и пектина . Видимо, для более крупных эукариотических клеток стало невозможно создавать клеточную стенку из одной молекулы высокую по прочности. Это обстоятельство могло заставить эукариот использовать иной материал для клеточной стенки. Другое объяснение состоит в том, что общий предок эукариот в связи с переходом к хищничеству утратил клеточную стенку, а затем были утрачены и гены, отвечающие за синтез муреина. При возврате части эукариот к осмотрофному питанию клеточная стенка появилась вновь, но уже на другой биохимической основе.

Разнообразен и обмен веществ у бактерий. Вообще всего выделяют четыре типа питания, и среди бактерий встречаются все. Это фотоавтотрофные, фотогетеротрофные, хемоавтотрофные, хемогетеротрофные (фототрофные используют энергию солнечного света, хемотрофные используют химическую энергию). Эукариоты же либо сами синтезируют энергию из солнечного света, либо используют готовую энергию такого происхождения. Это может быть связано с появлением среди эукариотов хищников, необходимость синтезировать энергию для которых отпала.

Ещё одно отличие - строение жгутиков. У бактерий они тонкие - всего 15–20 нм в диаметре. Это полые нити из белка флагеллина . Строение жгутиков эукариот гораздо сложнее. Они представляют собой вырост клетки, окруженный мембраной, и содержат цитоскелет (аксонему) из девяти пар периферических микротрубочек и двух микротрубочек в центре. В отличие от вращающихся прокариотическох жгутиков жгутики эукариот изгибаются или извиваются.

Две группы рассматриваемых нами организмов, как уже было сказано, сильно отличаются и по своим средним размерам. Диаметр прокариотической клетки составляет обычно 0,5–10 мкм, когда тот же показатель у эукариот составляет 10–100 мкм. Объём такой клетки в 1000–10000 раз больше, чем прокариотической.

Рибосомы прокариот мелкие (70S-типа). Клетки эукариот содержат как более крупные рибосомы 80S-типа, находящиеся в цитоплазме, так и 70s-рибосомы прокариотного типа, расположенные в митохондриях и пластидах.

Видимо, различается и время возникновения этих групп. Первые прокариоты возникли в процессе эволюции около 3,5 млрд. лет назад, от них около 1,2 млрд. лет назад произошли эукариотические организмы.

См. также

Зарубежная литература

  1. Bisby FA, Roskov YR, Ruggiero MA, Orrell TM, Paglinawan LE, et al. Species 2000 & ITIS catalogue of life: 2007 annual checklist. Species 2000. Retrieved Jan. 2007. 21, 2008
  2. Patterson DJ. The diversity of eukaryotes. Am Nat. 1999
  3. Stechmann A, Cavalier-Smith T. Rooting the eukaryote tree by using a derived gene fusion. Science. 2002
  4. Richards TA, Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature. 2005
  5. Stechmann A, Cavalier-Smith T. Phylogenetic analysis of eukaryotes using heat-shock protein Hsp90. J Mol Evol. 2003
  6. Makiuchi T, Nara T, Annoura T, Hashimoto T, Aoki T. Occurrence of multiple, independent gene fusion events for the fifth and sixth enzymes of pyrimidine biosynthesis in different eukaryotic groups. Gene. 2007
  7. Kim E, Simpson AGB, Graham LE. Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. Mol Biol Evol. 2006
  8. Nozaki H, Matsuzaki M, Misumi O, Kuroiwa H, Higashiyama T, et al. Phylogenetic implications of the CAD complex from the primitive red alga Cyanidioschyzon merolae (Cyanidiales, Rhodophyta). J Phycol. 2005
  9. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 2005
  10. Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, et al. The tree of eukaryotes. Trends Ecol Evol. 2005
  11. Simpson AGB, Roger AJ. The real ‘kingdoms’ of eukaryotes. Curr Biol. 2004
  12. Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, et al. Evaluating support for the current classification of eukaryotic diversity. PLoS Genet. 2006
  13. Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, et al. Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE. 2007
  14. Bodyl A. Do plastid-related characters support the chromalveolate hypothesis? J Phycol. 2005
  15. Stiller JW, Riley J, Hall BD. Are red algae plants? A critical evaluation of three key molecular data sets. J Mol Evol. 2001
  16. Grzebyk D, Katz ME, Knoll AH, Quigg A, Raven JA, et al. Response to comment on “The evolution of modern eukaryotic phytoplankton”. Science. 2004
  17. Yoon HS, Grant J, Tekle YI, Wu M, Chaon BC, et al. Broadly sampled multigene trees of eukaryotes. BMC Evol Biol. 2008
  18. Jarvis P, Soll M. Toc, Tic, and chloroplast protein import. Biochim Biophys Acta. 2001
  19. Marin B, Nowack ECM, Melkonian M. A plastid in the making: primary endosymbiosis. Protist. 2005
  20. Nowack ECM, Melkonian M, Glockner G. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol. 2008
  21. Theissen U, Martin W. The difference between organelles and endosymbionts. Curr Biol. 2006
  22. Bhattacharya D, Archibald JM. The difference between organelles and endosymbionts - response to Theissen and Martin. Curr Biol. 2006
  23. Okamoto N, Inouye I. The katablepharids are a distant sister group of the Cryptophyta: a proposal for Katablepharidophyta divisio nova/Kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. Protist. 2005
  24. Andersen RA. Biology and systematics of heterokont and haptophyte algae. Am J Bot. 2004
  25. Cavalier-Smith T. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol. 1999
  26. Graham LE, Wilcox LW. Algae. Upper Saddle River, NJ: Prentice Hall; 2000
  27. Schnepf E, Elbrachter M. Dinophyte chloroplasts and phylogeny: a review. Grana. 1999
  28. Kohler S, Delwiche CF, Denny PW, Tilney LG, Webster P, et al. A plastid of probable green algal origin in apicomplexan parasites. Science. 1997
  29. Kohler S. Multi-membrane-bound structures of Apicomplexa: I. the architecture of the Toxoplasma gondii apicoplast. Parasitol Res. 2005
  30. Hopkins J, Fowler R, Krishna S, Wilson I, Mitchell G, et al. The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. Protist. 1999
  31. Tomova C, Geerts WJC, Muller-Reichert T, Entzeroth R, Humbel BM. New comprehension of the apicoplast of Sarcocystis by transmission electron tomography. Biol Cell. 2006
  32. Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancova M, et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature. 2008
  33. Stiller JW, Reel DC, Johnson JC. A single origin of plastids revisited: convergent evolution in organellar genome content. J Phycol. 2003
  34. Larkum AWD, Lockhart PJ, Howe CJ. Shopping for plastids. Trends Plant Sci. 2007
  35. McFadden GI, van Dooren GG. Evolution: red algal genome affirms a common origin of all plastids. Curr Biol. 2004
  36. Stiller JW, Hall BD. The origin of red algae: implications for plasmid evolution. Proc Natl Acad Sci U S A. 1997
  37. Sanchez-Puerta MV, Bachvaroff TR, Delwiche CF. Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol Phylogenet Evol. 2007
  38. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, et al. The evolution of modern eukaryotic phytoplankton. Science. 2004
  39. Fast NM, Kissinger JC, Roos DS, Keeling PJ. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol. 2001
  40. Bucknam J, Boucher Y, Bapteste E. Refuting phylogenetic relationships. Biol Direct. 2006
  41. Gupta RS, Golding GB. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol. 1993
  42. Gupta RS, Singh B. Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr Biol. 1994
  43. Gomez-Lorenzo MG, Spahn CMT, Agrawal RK, Grassucci RA, Penczek P, et al. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 angstrom resolution. EMBO J. 2000
  44. Jorgensen R, Merrill AR, Andersen GR. The life and death of translation elongation factor 2. Biochem Soc Trans. 2006
  45. Moreira D, Le Guyader H, Philippe H. The origin of red algae and the evolution of chloroplasts. Nature. 2000
  46. Germot a, Philippe H. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family. J Eukaryot Microbiol. 1999
  47. Philippe H, Delsuc F, Brinkmann H, Lartillot N. Phylogenomics. Annu Rev Ecol Evol Syst. 2005
  48. Wiens JJ. Missing data and the design of phylogenetic analyses. J Biomed Inform. 2006
  49. Philippe H, Snell EA, Bapteste E, Lopez P, Holland PWH, et al. Phylogenomics of eukaryotes: Impact of missing data on large alignments. Mol Biol Evol. 2004
  50. Patron NJ, Inagaki Y, Keeling PJ. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol. 2007
  51. Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rummele SE, et al. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with Chromalveolates. Mol Biol Evol. 2007
  52. McFadden GI. Primary and secondary endosymbiosis and the origin of plastids. J Phycol. 2001
  53. Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, et al. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol. 2005
  54. Nosenko T, Bhattacharya D. Horizontal gene transfer in chromalveolates. BMC Evol Biol. 2007
  55. Lane CE, van den Heuvel K, Korera C, Curtis BA, Parsons BJ, et al. Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci U S A. 2007
  56. Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, et al. The highly reduced genome of an enslaved algal nucleus. Nature. 2001
  57. Vørs N. Ultrastructure and autecology of the marine, heterotrophic flagellate Leucocryptos marina (Braaud) Butcher 1967 (Kathablepharidaceae/Kathablepharidae), with a discussion of the genera Leucocryptos and Katablepharis/Kathablepharis. Eur J Protistol. 1992
  58. McFadden GI, Gilson PR, Hill DRA. Goniomonas: ribosomal RNA sequences indicate that this phagotrophic flagellate is a close relative of the host component of cryptomonads. Eur J Phycol. 1994
  59. Maddison WP. Gene trees in species trees. Syst Biol. 1997
  60. Stiller JW. Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci. 2007
  61. Steiner JM, Yusa F, Pompe JA, Loffelhardt W. Homologous protein import machineries in chloroplasts and cyanelles. Plant J. 2005
  62. Stoebe B, Kowallik KV. Gene-cluster analysis in chloroplast genomics. Trends Genet. 1999
  63. Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, et al. A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol. 1999
  64. Rissler HM, Durnford DG. Isolation of a novel carotenoid-rich protein in Cyanophora paradoxa that is immunologically related to the light-harvesting complexes of photosynthetic eukaryotes. Plant Cell Physiol. 2005
  65. Stoebe B, Martin W, Kowallik KV. Distribution and nomenclature of protein-coding genes in 12 sequenced chloroplast genomes. Plant Mol Biol Rep. 1998
  66. Loffelhardt W, Bohnert HJ, Bryant DA. The complete sequence of the Cyanophora paradoxa cyanelle genome (Glaucocystophyceae). Plant Syst Evol. 1997
  67. O"Kelly C. Relationships of eukaryotic algal groups to other protists. In: Berner T, editor. Ultrastructure of microalgae. Boca Raton, FL: CRC Press; 1993
  68. Stiller JW, Harrell L. The largest subunit of RNA polymerase II from the Glaucocystophyta: functional constraint and short-branch exclusion in deep eukaryotic phylogeny. BMC Evol Biol. 2005
  69. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science. 2000
  70. Burger G, Saint-Louis D, Gray MW, Lang BF. Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea: cyanobacterial introns and shared ancestry of red and green algae. Plant Cell. 1999
  71. Secq MPO, Goer SL, Stam WT, Olsen JL. Complete mitochondrial genomes of the three brown algae (Heterokonta: Phaeophyceae) Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis. Curr Genet. 2006
  72. Kim E, Lane CE, Curtis BA, Kozera C, Bowman S, et al. Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae). BMC Genomics. 2008
  73. Gibbs SP. The Chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci. 1981
  74. Rumpho ME, Summer EJ, Manhart JR. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol. 2000
  75. Leander BS, Keeling PJ. Morphostasis in alveolate evolution. Trends Ecol Evol. 2003
  76. Moriya M, Nakayama T, Inouye I. A new class of the stramenopiles, Placididea classis nova: description of Placidia cafeteriopsis gen. et sp nov. Protist. 2002
  77. Kim E, Archibald JM. Diversity and evolution of plastids and their genomes. In: Sandelius AS, Aronsson H, editors. The Chloroplast: Interactions with the environment. Heidelberg: Springer; 2008
  78. Harper JT, Keeling PJ. Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol. 2003
  79. Takishita K, Ishida KI, Maruyama T. Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates. Protist. 2004
  80. Takishita K, Kawachi M, Noel MH, Matsumoto T, Kakizoe N, et al. Origins of plastids and glyceraldehyde-3-phosphate dehydrogenase genes in the green-colored dinoflagellate Lepidodinium chlorophorum. Gene. 2008
  81. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A. 2002
  82. Ohta N, Matsuzaki M, Misumi O, Miyagishima S, Nozaki H, et al. Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res. 2003
  83. Bachvaroff TR, Puerta MVS, Delwiche CF. Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Mol Biol Evol. 2005
  84. Bodyl A, Moszczynski K. Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis. Eur J Phycol. 2006
  85. Lee RE, Kugrens P. Katablepharis ovalis, a colorless flagellate with interesting cytological characteristics. J Phycol. 1991
  86. Lee RE, Kugrens P, Mylnikov AP. The structure of the flagellar apparatus of two strains of Katablepharis (Cryptophyceae). Br Phycol J. 1992
  87. Clay B, Kugrens P. Systematics of the enigmatic kathablepharids, including EM characterization of the type species, Kathablepharis phoenikoston, and new observations on K. remigera com. nov. Protist. 1999
  88. Domozych DS, Wells B, Shaw PJ. Scale biogenesis in the green alga, Mesostigma viride. Protoplasma. 1992
  89. Domozych DS, Stewart KD, Mattox KR. Development of the cell wall in Tetraselmis: role of the Golgi apparatus and extracellular wall assembly. J Cell Sci. 1981
  90. Gupta RS. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev. 1998
  91. Boorstein WR, Ziegelhoffer T, Craig EA. Molecular evolution of the HSP70 multigene family. J Mol Evol. 1994
  92. Maddison DR, Maddison WP. MacClade 4: analysis of phylogeny and character evolution. Sunderland, MA: Sinauer Associates Inc; 2001
  93. Inagaki Y, Simpson AGB, Dacks JB, Roger AJ. Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. Syst Biol. 2004
  94. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006
  95. Lartillot N, Brinkmann H, Philippe H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol. 2007
  96. Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005
  97. Schmidt HA, Strimmer K, Vingron M, von Haeseler A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002
  98. Desper R, Gascuel O. Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J Comput Biol. 2002
  99. Felsenstein J. Seattle: Department of Genome Sciences, University of Washington; 2005

Литература на русском

  1. Галицкий В. А. Возникновение эукариотических клеток и происхождение апоптоза // Цитология, 2005, том 47, вып. 2, с. 103-120.
  2. Биологический энциклопедический словарь / под редакцией М. С. Гилярова . - М., 1989.
  3. Мирабдуллаев И. М. Проблема происхождения эукариот // Успехи совр. биол. 1989а. Т. 107. С. 341-356.
  4. Марков А. В. Проблема происхождения эукариот // Палеонтологический журнал 2 (2005): 3-12.
  5. Б. М. Медников. Биология: формы и уровни жизни. - Просвещение, 1995.
  6. Д. Тейлор, Н. Грин, У. Стаут. Биология (в трёх томах)
  7. В.В.Малахов. Основные этапы эволюции эукариотных организмов. 2003
  8. М. А. Федонкин. Сужение геохимического базиса жизни и эвкариотизация биосферы: причинная связь. 2003
  9. С. В. Шестаков. О ранних этапах биологической эволюции с позиции геномики. 2003
  10. Марков А.В. Проблема происхождения эукариот
  11. А.В.Марков, А.М.Куликов. Происхождение эвкариот: выводы из анализа белковых гомологий в трех надцарствах живой природы
  12. Г.А.Заварзин. Эволюция микробных сообществ.
  13. Н.А.Колчанов. Эволюция регуляторных генетических систем.
  14. А.Ю.Розанов, М.А.Федонкин. Проблема первичного биотопа эвкариот. 1994.
  15. Ю.Ф.Богданов, С.Я.Дадашев, Т.М.Гришаева. Сравнительная геномика и протеомика дрозофилы, нематоды Бреннера и арабидопсиса. Идентификация функционально сходных генов и белков синапсиса мейотических хромосом
  16. Ермилова Е.В., Залуцкая Ж.М., Лапина Т.В. Подвижность и поведение микроорганизмов Т.2: Эукариоты
  17. Греннер Д., Марри Р., Мейес П., Родуэлл В. Биохимия человека

Все организмы на нашей планете состоят из клеток. Клетки принято разделять на эукариоты и прокариоты.

Эукариоты

Для начала следует определить, что такое эукариоты. Если перевести этот термин с греческого языка, то он переводится, как владеющий ядром. В ядре таких организмов содержится генетический код. К таким организмам следует отнести растения, грибы и животных.

Строение клетки эукариот различное у разных организмов. Клетка эукариот имеет довольно сложное строение. Все клетки эукариот состоят из ядра и цитоплазмы.

Клетка эукариот имеет оболочку, называемую плазмалеммой. Она защищает клетку, избирательно позволяя проникать в клетку определенным веществам. Изнутри к ней примыкает цитоплазма. В цитоплазме хранятся различные вещества. В клетке имеется эндоплазматическая сеть, которая способствует циркуляции по клетке веществ, а также переносу их из одной клетки в другую. Рибосомы, которые также находятся в клетке, отвечают за синтез белков. Кроме того, клетке могут содержаться комплекс Гольджи, митохондрии, лизосомы, центриоли. Ядро клетки содержит ДНК и отвечает за обмен веществ. Оно покрыто специальной оболочкой, с помощью которой происходит между ядром и цитоплазмой обмен веществ.

Рассмотрев строение эукариот, становится понятным, что такое эукариоты, и что без ядра они существовать не могут. Клетки эукариот бывают одноядерные и многоядерные. Ядро может иметь разнообразную форму, которая зависит от формы самой клетки.

Чем отличаются эукариоты и прокариот

Прокариоты – это организмы, находящиеся в клетках, которых отсутствует ядро. Отсутствие ядра - это основное, чем прокариоты отличаются от эукариотов. К прокариотам относятся, например, бактерии.

Эукариоты и прокариоты отличаются также размерами и объемом. Эукариоты имеют намного больший размер, чем прокариоты. Эукариоты обычно многоклеточные организмы, а прокариоты одноклеточные. Прокариоты размножаются простым делением клетки пополам, а эукариоты имеют более сложный механизм размножения. ДНК эукариот располагается в ядре, а прокариот в цитоплазме.

К прокариотическим организмам относятся бактерии - прежде всего бактерии в традиционном смысле этого термина, затем сине-зеленые водоросли (цианобактерии) и недавно открытые зеленые водорослеподобные организмы (хлороксибактерии), а также некоторые многоклеточные организмы, такие как актинобактерии (актиномицеты) и миксобактерии, образующие плодовые тела.

Все это - микробы. Название «прокариоты» происходит от греческих слов pro (перед) и karyon (семя, ядро). Прокариотические клетки в большинстве своем меньше эукариотических. Прокариотическую структуру, несущую гены, иногда неправильно называемую бактериальной хромосомой , следует называть генофором . Это кольцевая цепь ДНК, которая не находится в ядре, окруженном мембраной; в электронном микроскопе генофор выглядит как сравнительно прозрачная область, которую называют нуклеоидом . В эукариотической клетке носителями генов служат хромосомы, находящиеся в ядре, ограниченном мембраной. В исключительно тонких, прозрачных препаратах можно видеть живые хромосомы с помощью светового микроскопа; чаще же их изучают в фиксированных и окрашенных клетках (в отличие от генофора прокариот хромосомы окрашиваются в красный цвет реактивом Фёльгена). Хромосомы построены из ДНК, которая находится в комплексе с пятью гистонами-белками, богатыми аргинином и лизином и составляющими у большинства эукариот значительную часть массы хромосом (более половины). Гистоны придают хромосомам ряд характерных свойств - упругость, способность к компактной укладке и окрашиваемость. Однако они непричастны к способности хромосом передвигаться, за которую ответственны митотическое веретено или сходные с ним системы микротрубочек.

Все широко известные организмы - водоросли, простейшие, плесени, высшие грибы, животные и растения - состоят из эукариотических клеток. Клетки этих организмов (за исключением некоторых протоктистов) делятся путем митоза - так называемым непрямым делением, при котором хромосомы продольно «расщепляются» и расходятся двумя группами к противоположным полюсам клетки. Слово митоз в этой книге будет употребляться в классическом смысле - только тогда, когда речь идет о хромосомах и митотическом аппарате; в это понятие не входит точное прямое распределение генов, составляющих группу сцепления (генофор) у бактерий. Прокариотические клетки могут делиться перетяжкой на равные части или почкованием на неравные части, но они никогда не делятся путем митоза.

Прокариоты обычно размножаются бесполым способом. У многих из них половой процесс вообще неизвестен и потомство имеет только одного родителя (в этой книге под половым размножением понимается любой процесс, при котором каждый потомок имеет более чем одного родителя - обычно двух). У прокариот, способных к половому размножению, половые системы однонаправленны в том смысле, что клетки-доноры («мужские») передают свои гены клеткам-реципиентам («женским»). Число передаваемых генов варьирует от одной конъюгации к другой: гены образуют длинную молекулу ДНК, и обычно передается лишь небольшая часть генома (но иногда - почти весь геном). При конъюгации бактерий не происходит слияния цитоплазмы клеток, как это бывает у всех животных, у грибов (при слиянии гиф) и у многих растений и протоктистов. Новый прокариотический организм, называемый рекомбинантом, состоит из самой клетки-реципиента, в которой некоторые гены замещены генами донора. Таким образом, у прокариот родители почти никогда не вносят равного вклада. С другой стороны, у эукариотической клетки, возникающей половым путем (зиготы), вклад родителей одинаков или почти одинаков: новая эукариотическая особь обычно получает половину генов и некоторое количество нуклеоплазмы и цитоплазмы от каждого родителя.

Хромосомы построены из ДНК и белков, но препараты изолированных хромосом часто содержат также значительную примесь РНК из других областей ядра. Эта РНК, вероятно, как информационная, так и рибосомная - легко прилипает к изолированным хромосомам. Эукариотическое ядро содержит также ядрышки, состоящие из предшественников цитоплазматических рибосом - из цепей РНК различной длины и большого числа белков. Другие органеллы, свойственные только эукариотическим клеткам, - это митохондрии, пластиды, центриоли и кинетосомы с их ундулиподиями. За исключением микротрубочек, которые встречаются как внутри, так и вне ядра, все эти органеллы лежат с наружной стороны от ядерной мембраны.

Все двигательные органеллы эукариотической клетки имеют толщину около 0,25 мкм; из них более длинные (от 10 до 15 мкм) и представленные у каждой клетки в небольшом числе по традиции называют жгутиками, а более короткие и многочисленные-ресничками. Электронная микроскопия выявила поразительное структурное сходство всех эукариотических ресничек и жгутиков: на поперечном разрезе во всех случаях можно видеть одно и то же расположение белковых микротрубочек (9 + 2), диаметр каждой из которых составляет около 0,024 мкм. Эти органеллы гораздо сложнее бактериальных жгутиков и имеют совершенно иную структуру и иной белковый состав. Пришло время, чтобы их названия отразили новые сведения; поэтому в нашей книге для ресничек, жгутиков и родственных им органелл эукариот (например, для осевой нити в хвосте спермия, для структурных единиц цирруса у инфузорий и других структур типа 9 + 2 и их производных, развивающихся из кинетосом, которые сами имеют на поперечном разрезе структуру 9 + 0) используется термин ундулиподия. Название жгутик оставлено для тонких бактериальных жгутиков и гомологичных им структур, таких как аксиальные фибриллы спирохет; обычно жгутики слишком малы, чтобы их можно было видеть с помощью обычного светового микроскопа. Эта менее двусмысленная терминология основана на соображениях Т. Яна и его коллег.

Общеизвестные прокариоты и эукариоты

Прокариоты

Эукариоты

Одноклеточные гетеротрофы

Настоящие бактерии: сероводородные бактерии, Е. coli, псевдомонады, некоторые железобактерии, бациллы, метанообразующие бактерии, азотфиксирующие бактерии, спирохеты, микоплазмы, риккетсии, Chlamydia, Bedsonia

Протисты: амебы, радиолярии, фораминиферы, инфузории, споровики, некоторые динофлагелляты. Некоторые дрожжи

Автотрофы

Сине-зеленые и зеленые прокариотические водоросли (т. е. цианобактерии и хлороксибактерии), другие фотосинтезирующие бактерии, хемоавтотрофные бактерии

Водоросли: красные, бурые, харовые, диатомовые; некоторые динофлагелляты, хлореллы, Cyanidium. Растения: мхи, печеночники, папоротники, цикадовые, хвойные, цветковые

Мицелиальные и многоклеточные организмы

Актинобактерии (актиномицеты), некоторые скользящие и почкующиеся бактерии

Водные плесени, хитриды, шляпочные грибы, дождевики, аскомицеты, слизевики. Растения. Животные: губки, гребневики, кишечнополостные, плеченогие, мшанки, аннелиды, брюхоногие моллюски, членистоногие, иглокожие, оболочники, рыбы, млекопитающие

Различия между прокариотами и эукариотами

Признаки

Прокариоты

Эукариоты

Размеры клеток

Клетки большей частью мелкие (1-10 мкм); некоторые больше 50 мкм

Клетки большей частью крупные (10-100 мкм); некоторые больше 1 мм

Общие особенности

Исключительно микроорганизмы. Одноклеточные или колониальные. Морфологически наиболее сложны нитчатые или мицелиальные формы с «плодовыми телами». Нуклеоид без пограничной мембраны

Некоторые - микроорганизмы; большинство-крупные организмы. Одноклеточные, колониальные, мицелиальные или многоклеточные. Морфологически наиболее сложны позвоночные животные и покрытосеменные растения. Все имеют ядро с пограничной мембраной

Клеточное деление

Немитотическое, прямое, чаще всего путем расщепления надвое или почкования. Генофор содержит ДНК, но не содержит белка; не дает реакции Фёльгена. Центриолей, митотического веретена и микротрубочек нет

Различные формы митоза. Обычно имеется много хромосом, содержащих ДНК, РНК и белки и дающих ярко-красную окраску по Фёльгену. У многих форм имеются центриоли, а также. митотическое веретено или упорядоченно расположенные микротрубочки

Системы пола

У большинства форм отсутствуют; если имеются, то осуществляют однонаправленный перенос генетического материала от донора к реципиенту

У большинства форм имеются; равное участие обоих родителей в оплодотворении

Развитие

Отсутствует многоклеточное развитие, начинающееся от диплоидных зигот; нет выраженной дифференциации тканей. Только одиночные или колониальные формы. Нет сложных межклеточных соединений. Метаморфоз редок

Гаплоидные формы образуются в результате мейоза, диплоидные развиваются из зигот; у многоклеточных - далеко идущая дифференциация тканей. Плазмодесмы, десмосомы и другие сложные межклеточные соединения. Метаморфоз обычен

Устойчивость к кислороду

Строгие или факультативные анаэробы, микроаэрофилы или аэробы

В основном аэробы. Исключения - явно вторичные модификации

Обмен веществ

Различные схемы метаболизма; нет специализированных, ограниченных мембранами органелл с ферментами, предназначенными для окисления органических молекул (нет митохондрий)

Во всех царствах одинаковая схема окислительного метаболизма: имеются мембранные органеллы (митохондрии) с ферментами окисления трикарбоновых органических кислот

Фотосинтез (если он имеется); липиды и др.

Ферменты фотосинтеза связаны с клеточными мембранами (хроматофоры), а не упакованы в виде отдельных органелл. Встречается анаэробный и аэробный фотосинтез с выделением серы, сульфата или кислорода. Донорами водорода могут быть H 2 , H 2 O, H 2 S или (H 2 CO) n . Липиды: вакциновая и олеиновая кислоты, гопаны; стероиды крайне редки. Образуют аминогликозидные антибиотики

Ферменты фотосинтеза находятся в пластидах, ограниченных мембранами. Большей частью фотосинтез с выделением кислорода; донором водорода всегда служит H 2 O. Липиды: обычны линолевая и линоленовая кислоты, стероиды (эргостерол, циклоартенол, холестерол). Обычны (особенно у растений) алкалоиды, флавоноиды, ацетогенины и другие вторичные метаболиты

Двигательные приспособления

Некоторые имеют простые бактериальные жгутики, состоящие из флагеллина; другие передвигаются путем скольжения. Внутриклеточное движение встречается редко или отсутствует; нет фагоцитоза, пиноцитоза и циклоза

У большинства имеются ундулиподии: «жгутики» или реснички типа 9 + 2. Структуры 9 + 0 или 6 + 0 представляют собой эволюционные модификации схемы 9 + 2. Обычны псевдоподии, содержащие актиноподобный белок. Характерно внутриклеточное движение (пиноцитоз, фагоцитоз, циклоз), осуществляемое с помощью специализированных белков - актина, миозина, тубулина

Клеточная стенка

Гликопептиды - производные диаминопимелиновой и мурамовой кислот; гликопротеиды редки или отсутствуют; аскорбиновая кислота не требуется

Хитин или целлюлоза; обычны гликопротеиды с гидроксилированными аминокислотами; необходима аскорбиновая кислота

Устойчивы к высыханию; теплоустойчивые эндоспоры содержат дипиколинат кальция; актиноспоры

Сложные, варьируют в зависимости от типа; нет дипиколината кальция; в спорах спорополленин; эндоспор нет